
livework

Alex McLean - ma503am@gold.ac.uk
Copyright 2006

Package

livework

Page 2 of 30

livework
Class Clock

java.lang.Object
 |
 +-livework.Clock

public class Clock
extends java.lang.Object
implements java.lang.Runnable

Threaded object to handle reasonably accurate timing for an application.
 When instantiated a Clock goes at a default rate of 120 'ticks' per minute, changeable via the
setTicksPerMinute() method. Every tick each member object in the triggerables array has its trigger()
method called.

All Implemented Interfaces:
java.lang.Runnable

Author:
Alex Mclean - ma503am@gold.ac.uk

Fields

maxTriggerables
public static final int maxTriggerables

Maximum number of objects this object can handle.
Constant value: 256

interval
private double interval

milliseconds per 'tick'

startTime
private long startTime

the time the clock starts

ticks
private int ticks

number of ticks since the clock started

triggerableCount
private int triggerableCount

number of objects in this object's triggerable array

(continued on next page)

Page 3 of 30

livework.Clock

(continued from last page)

triggerables
private livework.Triggerable triggerables

objects to trigger() every 'tick'

Constructors

Clock
public Clock()

Class constructor

Methods

setTicksPerMinute
void setTicksPerMinute(double tpm)

Parameters:
tpm - number of ticks per minute

getTicksPerMinute
double getTicksPerMinute()

addTriggerable
public boolean addTriggerable(Triggerable triggerable)

Adds an object to receive clock ticks via it's triggerable() method. The object must implement the
Triggerable interface.

Parameters:
triggerable

Returns:
true if the object was successfully added

run
public void run()

Thread starting point. Just calls the tickLoop() method.

tick
private void tick()

called once per tick by the tickLoop(). Calls the trigger() array on each object in the triggerable
array

Page 4 of 30

livework.Clock

(continued from last page)

tickLoop
private void tickLoop()

The thread loop. Calls tick() at the defined rate. Uses regulates itself using java.lang.nanoTime()
for accuracy, particularly on linux based systems.

Page 5 of 30

livework.Clock

livework
Class CompileException

java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-livework.CompileException

class CompileException
extends java.lang.Exception

A simple exception to represent a compile error.

All Implemented Interfaces:
java.io.Serializable

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

serialVersionUID
private static final long serialVersionUID

Constant value: 1

Constructors

CompileException
CompileException()

CompileException
CompileException(java.lang.String message)

Page 6 of 30

livework.CompileException

livework
Class Editor

java.lang.Object
 |
 +-java.awt.Component
 |
 +-java.awt.Container
 |
 +-java.awt.Window
 |
 +-java.awt.Frame
 |
 +-javax.swing.JFrame
 |
 +-livework.Editor

public class Editor
extends javax.swing.JFrame

The user interface for a livecoder using this application.
 A frame with two components, one being a text editor (of the excellent JEditTextArea class) and the
second a textarea any compiler errors (it actually captures everything sent to standard out).
 Whenever the livecoder presses ALT-X, the sourcecode is saved, causing the LiveProxy to try to
recompile and (if successful) reload it.

All Implemented Interfaces:
java.io.Serializable, java.awt.MenuContainer, java.awt.image.ImageObserver,
javax.accessibility.Accessible, java.awt.MenuContainer, javax.swing.RootPaneContainer,
javax.accessibility.Accessible, javax.swing.WindowConstants

See Also:
LiveProxy, jedit.JEditTextArea, ErrTextArea

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

sourcecode
private java.io.File sourcecode

File containing sourcecode that is being edited

textarea
private jedit.JEditTextArea textarea

The component for editing the sourcecode

errTextArea
private livework.ErrTextArea errTextArea

The textarea showing compiler output

Page 7 of 30

livework.Editor

(continued from last page)

serialVersionUID
private static final long serialVersionUID

I'm not going to serialize this class, but this avoids a compiler warning
Constant value: 1

Constructors

Editor
public Editor(java.io.File sourcecode)

Constructor for this class

Parameters:
sourcecode - the file to edit

Methods

initErrorComponent
private javax.swing.JComponent initErrorComponent()

initialises the pane showing errors

Returns:
a pane containing the ErrTextarea object

initSourcecodeComponent
private java.awt.Component initSourcecodeComponent()

initialises the pane containing the text editor

Returns:
a pane containing the JEditTextArea object with the sourcecode loaded

save
void save()

saves the edited file

Page 8 of 30

livework.Editor

livework
Class EditorInputHandler

java.lang.Object
 |
 +-java.awt.event.KeyAdapter
 |
 +-jedit.InputHandler
 |
 +-jedit.DefaultInputHandler
 |
 +-livework.EditorInputHandler

public class EditorInputHandler
extends jedit.DefaultInputHandler

A simple subclass of JEdit's DefaultInputHandler to bind ALT-x to the editor's save method.

All Implemented Interfaces:
java.awt.event.KeyListener

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

editor
private livework.Editor editor

Constructors

EditorInputHandler
public EditorInputHandler(Editor editor)

Contructor for this class

Parameters:
editor - The editor this is the input handler for

Methods

addDefaultKeyBindings
public void addDefaultKeyBindings()

Adds ALT-x to the defaults

Page 9 of 30

livework.EditorInputHandler

livework
Class Envelope

java.lang.Object
 |
 +-livework.Envelope

public class Envelope
extends java.lang.Object

A simple but useful envelope class. Tweens between a given a set of discreet values that represent an
envelope, so that a value can be returned for a floating point percentage. Tweening is linear.

This allows a set of envelopes to be applied to a visual element, for example to control brightness -
fading in and out.

The given array of values should be considered as continuous, equally spaced points describing the
envelope.

Fields

count
private int count

number of values

values
private float values

array of values

Constructors

Envelope
Envelope(float[] values)

Constructor for this class

Parameters:
values - array of float values.

Methods

value
float value(float percentage)

Calculates a value of the given percentage

Parameters:
percentage

Page 10 of 30

livework.Envelope

(continued from last page)

Returns:
the calculated value

Page 11 of 30

livework.Envelope

livework
Class ErrTextArea

java.lang.Object
 |
 +-java.awt.Component
 |
 +-java.awt.Container
 |
 +-javax.swing.JComponent
 |
 +-javax.swing.text.JTextComponent
 |
 +-javax.swing.JTextArea
 |
 +-livework.ErrTextArea

public class ErrTextArea
extends javax.swing.JTextArea

A textarea that captures standard error and displays it in itself

All Implemented Interfaces:
java.io.Serializable, java.awt.MenuContainer, java.awt.image.ImageObserver,
java.io.Serializable, javax.accessibility.Accessible, javax.swing.Scrollable

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

printStream
 java.io.PrintStream printStream

Stream to replace standard error with

serialVersionUID
private static final long serialVersionUID

I'm not going to serialize this class, but this avoids a compiler warning
Constant value: 1

Constructors

ErrTextArea
ErrTextArea()

Constructor for this class

Page 12 of 30

livework.ErrTextArea

livework
Class ErrTextArea.FilteredStream

java.lang.Object
 |
 +-java.io.OutputStream
 |
 +-java.io.FilterOutputStream
 |
 +-livework.ErrTextArea.FilteredStream

class ErrTextArea.FilteredStream
extends java.io.FilterOutputStream

Inner class for our replacement standard error to use

All Implemented Interfaces:
java.io.Flushable, java.io.Closeable

Constructors

ErrTextArea.FilteredStream
public ErrTextArea.FilteredStream(java.io.OutputStream aStream)

Methods

write
public void write(byte[] b)
 throws java.io.IOException

write
public void write(byte[] b,
 int off,
 int len)
 throws java.io.IOException

Page 13 of 30

livework.ErrTextArea.FilteredStream

livework
Class LiveProxy

java.lang.Object
 |
 +-java.lang.ClassLoader
 |
 +-livework.LiveProxy

public class LiveProxy
extends java.lang.ClassLoader
implements java.lang.reflect.InvocationHandler

This class is the heart of this project. Refer to the project report for information about how I arrived at
this implementation.

It employs a number of techniques towards the end of allowing a programmer to make changes to the
behaviour of objects by changing their classes. This isn't actually possible in Java yet, you cannot add a
method to a class that has already been loaded. This class achieves an approximate effect by using the
following smoke and mirrors:

• A proxy object - the LiveProxy class acts as a proxy for the object that is being live-edited. This

allows all calls to the object to be intercepted. When a call is made to the object via the proxy,
before passing the call on, the proxy checks the proxied object's class sourcecode for changes. If the
sourcecode has been changed, the class is dynamically compiled and loaded into a fresh package.

• Compilation - this is accomplished by calling javac via the "com.sun.tools.javac.Main" package.
Before compilation the source is modified to include a unique package statement. This is necessary
because a class can't be loaded twice into the same package.

• Dynamic loading - Because this class extends the ClassLoader class, it can load classes at runtime.
Once the class of the proxied object has been successfully compiled it loads the class ready to be
instantiated.

• Reflection - Because we can't really change the class of the proxied object (simplification - see
project report for the full story), we've loaded the class into a fresh package. This way it can keep its
original unqualified classname and therefore the names of its constructors and so on. Now an object
can't be moved from one class to another, so we do the next best thing - make a new object, copy
across all the fields we can, then forget about the original. This is akin to serialising an object, then
deserialising it into a different class, all in one go. Not all the fields will be copyable, some fields
might have been deleted by the programmer, or had been changed to a type incompatible with the
original. All this is made possible, perhaps even easy, by Java reflection. The classes, methods are
all accessible as objects.

• Exception handling - if any compilation errors are caught, execution continues with the original
version of the object intact.

So that's a short overview, for further details refer to the methods.

Note that a LiveProxy object also starts an Editor to edit the sourcecode of the class that's being
proxied. Once the programmer saves their changes to the source, the next call to the object via the
proxy will cause the object to be recompiled as above.

All Implemented Interfaces:
java.lang.reflect.InvocationHandler

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

Page 14 of 30

livework.LiveProxy

(continued from last page)

count
private int count

Count for the number of times this class has been recompiled, used for constructing unique
package names.

filename
private java.lang.String filename

The filename of the sourcecode for the class. It lives within the folder defined by the 'liveclasses'
setting.

See Also:
Settings

lastModified
private long lastModified

Records the last modified time of the sourcefile, so we can tell when it is modified again

sourcecode
private java.io.File sourcecode

Represents the fully qualified filename of the sourcefile

target
private java.lang.Object target

The compiled target object

Constructors

LiveProxy
private LiveProxy(java.lang.String filename)

The constructor for this class. It compiles and instantiates the class identified by the given
filename. If the file doesn't exist, it is created with some default sourcecode.

Parameters:
filename

Methods

createProxy
public static java.lang.Object createProxy(java.lang.String filename)

Instantiates itself with the given sourcefile, instantiating the target object in the process, and
returns a proxy class that acts as the target object but all accesses are passed to this object's
invoke() method

Parameters:

Page 15 of 30

livework.LiveProxy

(continued from last page)

filename - sourcefile of the class for the target object

Returns:
the proxy object

getInstanceVariables
static java.lang.reflect.Field[] getInstanceVariables(java.lang.Class cls)

The following method was taken from public domain book example - Forman and Forman, Java
Reflection in Action.
 Returns an array of fields for the given class

bumpCount
private void bumpCount()

Increases the count field by one and saves it to disk. This means that each edit of the java source
is saved to a fresh packages across multiple invocations of this class. This isn't necessary at the
moment but future versions of this application might allow the programmer to jump easily jump
back to editing and reloading previous versions of the class.

classdir
private java.lang.String classdir()

Retrieves from the user settings the folder where the sourcefiles to be edited are located.

copyClass
private java.lang.String copyClass()
 throws CompileException

Copies the sourcefile to a fresh package and compiles it there

Returns:
the name of the new class qualified by the new package

Throws:
CompileException - thrown when the compile wasn't successful. Compile errors are sent to
standard error, as captured by the editor and presented to the programmer to meditate over.

copyFields
private void copyFields(java.lang.Object newTarget,
 java.lang.Object source)

defaultSourcecode
private void defaultSourcecode()

findField
java.lang.reflect.Field findField(java.lang.Class myClass,
 java.lang.String fieldName)

Page 16 of 30

livework.LiveProxy

(continued from last page)

getClassData
private byte[] getClassData(java.lang.String directory,
 java.lang.String name)

The following method was taken from a public domain example from the book - Forman and
Forman, Java Reflection in Action.
 It returns the byte compiled class data for the given file within the given directory.

initGlobals
private void initGlobals(java.lang.Object object)
 throws java.lang.Throwable

This method sidesteps a big problem with this whole approach - field initialisation. When you
instantiate an object, fields are often initialised, ie:
 int foo = 40;
 Now if we changed that value to 41 and triggered a reload of the class, the field would get
initialised to 41, but then overwritten back to 40 by the copyFields() method. This might be what
the programmer wanted to happen, but then again, might not. Further, the initialisation might do
something that the programmer really only wants to happen once, not every time the program is
compiled.
 To allow the programmer full control over field initialisation, this method is called after
copyFields(). It reflectively looks for a method on the new target object called "initGlobals()". If it
finds one, it invokes (calls) it. If it doesn't, it does nothing.
 The programmer can therefore write code in such a method that initialises fields exactly as s/he
wants.

Parameters:
object - The new target object

Throws:
Throwable - An exception raised by a initGlobals method on the new target object.

invoke
public java.lang.Object invoke(java.lang.Object proxy,
 java.lang.reflect.Method method,
 java.lang.Object[] args)
 throws java.lang.Throwable

Intercepts calls to the target object via this proxy object. If necessary, it reloads the target object
invoking the method upon it.

loadObject
private java.lang.Object loadObject()
 throws CompileException

Loads the class and instantiates a new target object from it.

Returns:
the new target object

Throws:
CompileException - thrown when the compile failed

reloadTarget
public void reloadTarget()

Page 17 of 30

livework.LiveProxy

(continued from last page)

Reloads the target object from its sourcecode.

Page 18 of 30

livework.LiveProxy

livework
Class LiveWork

java.lang.Object
 |
 +-livework.LiveWork

public class LiveWork
extends java.lang.Object

Contains the main method for the application.

Constructors

LiveWork
public LiveWork()

The entry point for the livework application.
 Makes a LiveProxy for the Bare class, and instantiates a Clock object that calls the trigger()
method of the proxied object.

Methods

main
public static void main(java.lang.String[] args)

The main method for the LiveWork application, merely instantiates an object of this class.

Parameters:
args - not used

Page 19 of 30

livework.LiveWork

livework
Class MinimalTrigger

java.lang.Object
 |
 +-livework.MinimalTrigger

class MinimalTrigger
extends java.lang.Object
implements Triggerable

A class to instantiate a simple object from as a placeholder if a target object couldn't be loaded at
runtime. This is only used if an object doesn't compile when the LiveProxy is first instantiated, where a
previous compile isn't available to fall back on.

All Implemented Interfaces:
Triggerable

Author:
Alex McLean - ma503am@gold.ac.uk

Constructors

MinimalTrigger
MinimalTrigger()

Methods

trigger
public void trigger()

Page 20 of 30

livework.MinimalTrigger

livework
Class Nourathar

java.lang.Object
 |
 +-java.awt.Component
 |
 +-java.awt.Container
 |
 +-java.awt.Window
 |
 +-java.awt.Frame
 |
 +-javax.swing.JFrame
 |
 +-livework.Nourathar

public class Nourathar
extends javax.swing.JFrame
implements javax.swing.WindowConstants, javax.accessibility.Accessible,
javax.swing.RootPaneContainer, java.awt.MenuContainer,
javax.accessibility.Accessible, java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable, java.lang.Runnable

A frame for producing simple live video animations. Intended as a demonstration for the rest of this
application but explores some ideas inspired by Mary Hallock Greenwelt's concept of "Nourathar" - the
playing of colour transitions as a performance.
 I implemented an offscreen buffer to avoid flicker, but since then have readd that java2d can do this
internally. If I develop this further I'll be sure to simplify things by removing the manual offscreen buffer.

All Implemented Interfaces:
java.lang.Runnable, java.io.Serializable, java.awt.MenuContainer,
java.awt.image.ImageObserver, javax.accessibility.Accessible, java.awt.MenuContainer,
javax.swing.RootPaneContainer, javax.accessibility.Accessible, javax.swing.WindowConstants

Author:
Alex McLean - ma503am@gold.ac.uk

Fields

serialVersionUID
private static final long serialVersionUID

I'm not going to serialize this class, but this avoids a compiler warning
Constant value: 1

colors
private java.util.LinkedList colors

to contain the currently active NourtharColor objects

envelopes
private java.util.Hashtable envelopes

a lookup table for available envelopes to apply to the brightness levels of the NouratharColor
objects

Page 21 of 30

livework.Nourathar

g2d
private java.awt.Graphics2D g2d

The graphics context of the offscreen buffer

offscreenBuffer
private java.awt.Image offscreenBuffer

The offscreen buffer

Constructors

Nourathar
public Nourathar()

Contructor for this class. Initialises frame, offscreen buffer, envelopes and starts the thread for the
object.

Methods

initEnvelopes
void initEnvelopes()

Initialises the envelopes.

paint
public void paint(java.awt.Graphics g)

Paints the offscreen buffer.

play
public NouratharColor play(java.awt.Color color,
 java.lang.String envelopeName,
 int ttl,
 double x,
 double y,
 double size)

Method for 'playing' the nourathar. Causes a NouratharColor visual element to appear of the given
colour, location and size for the given length of time, with the brightness modulated by the given
envelope. The parameters are passed straight to the constructor of the NouratharColor class,
apart from the 'x', 'y' and 'size' parameters, which are given as proportion of the content pane
size and converted to pixel values.

Parameters:
color - Colour of the element at it's maximum brightness

Returns:
The created NouratharColor object

Page 22 of 30

livework.Nourathar

(continued from last page)

render
void render()

Draws the active nouratharColor visual elements on the offscreen buffer

run
public void run()

Thread loop for this class. Renders and paints the window once per 50 milliseconds

Page 23 of 30

livework.Nourathar

livework
Class NouratharColor

java.lang.Object
 |
 +-java.awt.geom.RectangularShape
 |
 +-java.awt.geom.Ellipse2D
 |
 +-java.awt.geom.Ellipse2D.Double
 |
 +-livework.NouratharColor

public class NouratharColor
extends java.awt.geom.Ellipse2D.Double

A class representing a circle of a given colour, brightness envelope, lifespan (ttl), location and size.

All Implemented Interfaces:
java.lang.Cloneable, java.awt.Shape

Author:
Alex McLean - ma503am@gold.ac.uk

See Also:
Nourathar

Fields

age
private int age

age of this object in triggers

color
private java.awt.Color color

Color of this object

envelope
private livework.Envelope envelope

ttl
private int ttl

Constructors

Page 24 of 30

livework.NouratharColor

(continued from last page)

NouratharColor
NouratharColor(java.awt.Color color,
 Envelope envelope,
 int ttl,
 double x,
 double y,
 double size)

Constructor for this object

Methods

dampenedColor
private java.awt.Color dampenedColor()

'Dampens' the colour of this object by finding the current value of the brightness envelope, and
applying it to the alpha component of the colour.

Returns:
the new colour

draw
void draw(java.awt.Graphics2D g2d)

Draws the colour, at its predefined location and size, and using the colour calculated using the
predefined brightness envelope.

Parameters:
g2d

getStrength
double getStrength()

Calculates the current strength (or brightness) of the colour according to the brightness envelope

Returns:
The calculated value

isExpired
boolean isExpired()

Calculates whether this object is as old or order than it's given ttl (lifespan)

Returns:
The calculated value

Page 25 of 30

livework.NouratharColor

livework
Class Settings

java.lang.Object
 |
 +-livework.Settings

public class Settings
extends java.lang.Object

Singleton class for managing user settings for the application.
 User settings strings can be set and retreived. On instantiantion the settings are checked for required
fields, which are set with default values as necessary.
 Settings are saved to a file "preferences.txt" under a directory called '.livework' under the user's home
directory. This is conventional under UNIX based systems, but may annoy users of other operating
systems.

Author:
Alex McLean - ma503@gold.ac.uk

Fields

singleton
private static livework.Settings singleton

Singleton object

table
private java.util.Hashtable table

Holds the settings in memory

settingsFile
private java.io.File settingsFile

File in which the settings are stored

dataFolder
private java.io.File dataFolder

Directory in which settings and other user data are saved.

Constructors

Settings
protected Settings()

Constructor for this class
 Cannot be called externally, call getInstance() instead.

Methods

Page 26 of 30

livework.Settings

(continued from last page)

getInstance
public static Settings getInstance()

Retreives the singleton object for this class.

Returns:
The settings object.

initSettings
private void initSettings()

Makes the data folder and settings file if they're missing

save
public void save()

Saves settings to the settings file.

load
public void load()
 throws java.io.IOException

Loads the settings file. Would rarely need to be called externally, as it's called automatically when
this object is first instantiated.

Throws:
IOException - thrown where there is a problem loading the settings file

get
public java.lang.String get(java.lang.String key)

Get a setting

Parameters:
key - The setting to be retrieved

Returns:
The value of the setting

put
public void put(java.lang.String key,
 java.lang.String value)

Set a setting

Parameters:
key - The setting to be set
value - The new value for the setting

sget
public static java.lang.String sget(java.lang.String key)

Page 27 of 30

livework.Settings

(continued from last page)

Static version of the set method

sput
public static void sput(java.lang.String key,
 java.lang.String value)

Static version of the put method

checkSettings
private void checkSettings()

Checks that the settings are valid, wiping any invalid values.

initRequired
private void initRequired()

Initialises required values and save()s if necessary.

initLiveClasspath
private void initLiveClasspath()

Initialises the "liveclasses" setting, where livecoded classes are saved and compiled. The directory
is created if necessary.

Page 28 of 30

livework.Settings

livework
Interface Triggerable

public interface Triggerable
extends

Interface for objects that have a trigger() method, and can therefore be passed to the Clock class.

All Known Implementing Classes:
MinimalTrigger

See Also:
Clock

Methods

trigger
public void trigger()

Page 29 of 30

livework.Triggerable

livework
Class Util

java.lang.Object
 |
 +-livework.Util

public class Util
extends java.lang.Object

Class containing static utility methods

Author:
Alex McLean - ma503am@gold.ac.uk

Constructors

Util
protected Util()

This class cannot be instantiated

Methods

error
public static void error(java.lang.String title,
 java.lang.String message,
 java.lang.Exception e)

Displays an error dialog and exits

Parameters:
title - Title of the dialog (or null for the default)
message - Contents of the dialog (required)
e - Exception that caused the error (or null if none)

Page 30 of 30

livework.Util

	All Classes
	Clock
	Fields
	interval
	maxTriggerables
	startTime
	ticks
	triggerableCount
	triggerables

	Constructors
	Clock()

	Methods
	addTriggerable(Triggerable)
	getTicksPerMinute()
	run()
	setTicksPerMinute(double)
	tick()
	tickLoop()

	CompileException
	Fields
	serialVersionUID

	Constructors
	CompileException(String)

	Editor
	Fields
	errTextArea
	serialVersionUID
	sourcecode
	textarea

	Constructors
	Editor(File)

	Methods
	initErrorComponent()
	initSourcecodeComponent()
	save()

	EditorInputHandler
	Fields
	editor

	Constructors
	EditorInputHandler(Editor)

	Methods
	addDefaultKeyBindings()

	Envelope
	Fields
	count
	values

	Constructors
	Envelope(float[])

	Methods
	value(float)

	ErrTextArea
	Fields
	printStream
	serialVersionUID

	Constructors
	ErrTextArea()

	ErrTextArea.FilteredStream
	Constructors
	ErrTextArea.FilteredStream(OutputStream)

	Methods
	write(byte[], int, int)

	LiveProxy
	Fields
	count
	filename
	lastModified
	sourcecode
	target

	Constructors
	LiveProxy(String)

	Methods
	bumpCount()
	classdir()
	copyClass()
	copyFields(Object, Object)
	createProxy(String)
	defaultSourcecode()
	findField(Class, String)
	getClassData(String, String)
	getInstanceVariables(Class)
	initGlobals(Object)
	invoke(Object, Method, Object[])
	loadObject()
	reloadTarget()

	LiveWork
	Constructors
	LiveWork()

	Methods
	main(String[])

	MinimalTrigger
	Constructors
	MinimalTrigger()

	Methods
	trigger()

	Nourathar
	Fields
	colors
	envelopes
	g2d
	offscreenBuffer
	serialVersionUID

	Constructors
	Nourathar()

	Methods
	initEnvelopes()
	paint(Graphics)
	play(Color, String, int, double, double, double)
	render()
	run()

	NouratharColor
	Fields
	age
	color
	envelope
	ttl

	Constructors
	NouratharColor(Color, Envelope, int, double, double, double)

	Methods
	dampenedColor()
	draw(Graphics2D)
	getStrength()
	isExpired()

	Settings
	Fields
	dataFolder
	settingsFile
	singleton
	table

	Constructors
	Settings()

	Methods
	checkSettings()
	get(String)
	getInstance()
	initLiveClasspath()
	initRequired()
	initSettings()
	load()
	put(String, String)
	save()
	sget(String)
	sput(String, String)

	Triggerable
	Methods
	trigger()

	Util
	Constructors
	Util()

	Methods
	error(String, String, Exception)

	Packages
	livework
	Clock
	Fields
	interval
	maxTriggerables
	startTime
	ticks
	triggerableCount
	triggerables

	Constructors
	Clock()

	Methods
	addTriggerable(Triggerable)
	getTicksPerMinute()
	run()
	setTicksPerMinute(double)
	tick()
	tickLoop()

	CompileException
	Fields
	serialVersionUID

	Constructors
	CompileException(String)

	Editor
	Fields
	errTextArea
	serialVersionUID
	sourcecode
	textarea

	Constructors
	Editor(File)

	Methods
	initErrorComponent()
	initSourcecodeComponent()
	save()

	EditorInputHandler
	Fields
	editor

	Constructors
	EditorInputHandler(Editor)

	Methods
	addDefaultKeyBindings()

	Envelope
	Fields
	count
	values

	Constructors
	Envelope(float[])

	Methods
	value(float)

	ErrTextArea
	Fields
	printStream
	serialVersionUID

	Constructors
	ErrTextArea()

	ErrTextArea.FilteredStream
	Constructors
	ErrTextArea.FilteredStream(OutputStream)

	Methods
	write(byte[], int, int)

	LiveProxy
	Fields
	count
	filename
	lastModified
	sourcecode
	target

	Constructors
	LiveProxy(String)

	Methods
	bumpCount()
	classdir()
	copyClass()
	copyFields(Object, Object)
	createProxy(String)
	defaultSourcecode()
	findField(Class, String)
	getClassData(String, String)
	getInstanceVariables(Class)
	initGlobals(Object)
	invoke(Object, Method, Object[])
	loadObject()
	reloadTarget()

	LiveWork
	Constructors
	LiveWork()

	Methods
	main(String[])

	MinimalTrigger
	Constructors
	MinimalTrigger()

	Methods
	trigger()

	Nourathar
	Fields
	colors
	envelopes
	g2d
	offscreenBuffer
	serialVersionUID

	Constructors
	Nourathar()

	Methods
	initEnvelopes()
	paint(Graphics)
	play(Color, String, int, double, double, double)
	render()
	run()

	NouratharColor
	Fields
	age
	color
	envelope
	ttl

	Constructors
	NouratharColor(Color, Envelope, int, double, double, double)

	Methods
	dampenedColor()
	draw(Graphics2D)
	getStrength()
	isExpired()

	Settings
	Fields
	dataFolder
	settingsFile
	singleton
	table

	Constructors
	Settings()

	Methods
	checkSettings()
	get(String)
	getInstance()
	initLiveClasspath()
	initRequired()
	initSettings()
	load()
	put(String, String)
	save()
	sget(String)
	sput(String, String)

	Triggerable
	Methods
	trigger()

	Util
	Constructors
	Util()

	Methods
	error(String, String, Exception)

