
TEXTURE: VISUAL NOTATION FOR LIVE CODING OF PATTERN

Alex McLean, Geraint Wiggins

Centre for Cognition, Computation and Culture
Department of Computing

Goldsmiths, University of London
alex@slab.org, g.wiggins@gold.ac.uk

ABSTRACT

Live coding, the use of programming language in impro-
vised performance, is the subject of growing research in-
terest. However little light has so far been thrown on the
visual (as opposed to the temporal) aspects of live cod-
ing practice. Live coders project their code when they
perform in the name of openness, but in so doing create
a troubling issue of audience code comprehension. Re-
latedly, the constraining pressures of live performance are
leading live coders to rethink the visual design of their lan-
guage interfaces, so they may rework programs at greater
speed and with lower cognitive load, using representations
that are closer to music compositional structure. These
two issues meet at the boundary between human percep-
tion and language. We examine this boundary to find
high-level understanding of issues in the design of live
coding languages, which is then practically applied in the
introduction of Texture, a visual programming language
for improvising music.

1. INTRODUCTION: FROM TIME TO SPACE –
DIRECTIONS IN LIVE CODING

The definition of live coding used here is “the activity of
writing a computer program while it runs”, after Ward
et al. [1]. Closely related terms are interactive, on-the-
fly [2], conversational [3], just-in-time [4] and with-time
[5] programming. Many of these terms are interchange-
able, although there are differences of technique and em-
phasis, for example live coding is most often used in the
context of improvised performance of music or video ani-
mation. The archetypal live coding performance involves
programmers writing code on stage, with their screens
projected for an audience, their code dynamically inter-
preted to generate music or video. The particular context
of improvised computer music is adopted here, and al-
though much of the following could be related to work
in live video animation, sole focus on computer music is
kept for brevity.

The primary research focus around live coding prac-
tice has been upon the integration of performance time
with development time, for example in the live coding pa-
pers already cited. This is important work, as the pro-
gression of time during the evaluation of an algorithm has
often been purposefully ignored in computer science [6].

This line of research is certainly not complete, but there
are now several working approaches to improvising mu-
sic through live code development. Some research em-
phasis has therefore moved from time to space, that is,
to the consideration of visuospatial perception within the
activity and spectacle of live coding performance.

In the following we take a psychological perspective,
finding a view that integrates visuospatial perception with
the rather linguistic activity of computer programming.
From this we outline design considerations for live coding
systems, finally grounding the discussion with the intro-
duction of a working prototype of a visual programming
language, designed for live coding of musical pattern.

2. OBSCURANTISM IS DANGEROUS. SHOW US
YOUR SCREENS.

The present section title is taken from the manifesto
drafted by the Temporary Organisation for the Promotion
of Live Algorithm Programming [TOPLAP; 1], a group
set up by live coders to discuss and promote live cod-
ing. This bold proclamation neatly encapsulates a prob-
lem at the heart of live coding; live coders wish to show
their interfaces so that the audience can see the movement
and structure behind their music, however in positioning
themselves against the computer music tradition of hid-
ing behind laptop screens [7], they are at risk of a charge
of greater obscurantism. Most people do not know how
to program computers, and many who do will not know
the particular language in use by a live coder. So, by pro-
jecting screens, do audience members feel included by a
gesture of openness, or excluded by a gibberish of code in
an obscure language? Do live coding performances fos-
ter melding of thoughts between performer and audience,
or do they cause audience members to feel stupid? Au-
diences have not yet been formally surveyed on this is-
sue, but anecdotal experience suggests both reactions are
possible. A non-programmer interviewee in a BBC news
item (“Programming, meet music”, 28th August 2009) re-
ported ignoring projected screens and just listening to the
music, and far worse reactions have been rumoured. On
the other hand, a popular live coding tale has it that af-
ter enjoying a live coding performance by Dave Griffiths
in Brussels (FoAM studios, 17th December 2005), a non-
programmer turned to their lover and was overheard to
exclaim “Now I understand! Now I understand why you

mailto:alex@slab.org
mailto:g.wiggins@gold.ac.uk

spend so much time programming.”
Partly in reaction to the issue of inclusion, a new di-

rection of research into visual programming has emerged
from live coding practice. To avoid confusion, note that
the use of visual here is not the same as the prefix used in
industry, such as in “Visual Basic”, to describe language
environments based on GUI forms and event-driven pro-
gramming. Instead, visual programming languages are
those making heavy use of visual elements in the code it-
self, for example where a program is notated as a graphi-
cal diagram. Visual programming language is itself a well
established research field, with a great deal of promise but
without wide industry take up. The intention of many vi-
sual language researchers has been to find ways of using
visual notation that result in new, broadly superior gen-
eral programming languages [8]. However this panacea
has not been reached, and instead inherent, inescapable
trade-offs have become apparent [9], which we will exam-
ine in §6. There are however two domains where visual
programming has been highly successful, one being en-
gineering, exemplified by the LabVIEW visual program-
ming language. The other domain is, of course, computer
music.

3. PATCHER LANGUAGES

It is time to stop avoiding the imposing glare from the ele-
phant in the room. Patcher languages have been a domi-
nant force in computer music since their introduction by
Puckette [10]. Using a data flow model inspired by ana-
log modular synthesis, users of Patcher languages such as
Pure Data or Max/MSP are able to build patches using a
visual notation of boxes and wires. Patches may be built
and modified while they are active, a form of live coding
that predates the contemporary live coding movement by
well over a decade. The long-lived popularity of Patcher
languages, the continued innovation within communities
around them, and the artistic success of their use is unde-
niable.

While acknowledging the success of Patcher lan-
guages, we raise a point of controversy; in terms of syn-
tax, they are not particularly visual. You can put an object
wherever you like in PureData, or place them all on top of
one another, it makes no difference. Those familiar with
Max/MSP may counter this line of argument by point-
ing out that right-left ordering signifies evaluation order
in Max. This falls on two counts; first, Max program-
mers are discouraged from relying on this, in favour of
the trigger object. Second, having right-left execution or-
der does not distinguish Max from any mainstream textual
language. This lack of visual syntax in Patcher languages
allows syntax graphs of hypercubes and up, unconstrained
by visible dimensions. Furthermore, to say that Patcher
languages are not themselves significantly textual is in
blind denial of the large number of operators and key-
words shown as editable text in a patch.

If the above seems like an attack on Patcher languages,
then we immediately capitulate by pointing out that syn-

tax is not everything. Well, to the interpreter syntax is ev-
erything, but to the programmer, it is only half the story.
Every usable programming language has secondary nota-
tion [9], aspects such as comments, variable names and
spatial arrangement with little or no syntactical signifi-
cance, but which allow the programmer to write code that
is readable and therefore maintainable. Many program-
ming environments augment code with secondary nota-
tion not explicitly stored in a source file, such as colour
syntax highlighting. Because Patcher languages have such
remarkably free secondary notation, they allow us to lay
programs out however we like, and to embrace this free-
dom in making beautiful patches that through shape and
form relate structure to a human at a glance, in ways that
linguistic syntax alone cannot do. While the language
syntax is not visual, the notation as a whole is very much
so.

4. CODE AND MENTAL IMAGERY

All programming languages can be considered in visual
terms, we do after all normally use our eyes to read
source code. Programming languages generally have con-
text free-grammars, allowing recursive forms often en-
capsulated within parentheses, resulting in a kind of vi-
sual Euler diagram. We can also say that adjacency is
a visual attribute of grammar; gestalt psychologists cer-
tainly have a lot to say about adjacency and perception
[11]. These visual features generally exist to support lin-
guistic reading of code, where our eyes saccade across
the screen, recognising discrete symbols in parallel, chun-
ked into words [12]. Crucially however, we are able
to attend to both visuospatial and linguistic aspects of
a scene simultaneously, and integrate them. Paivio [13]
explains this through his theory of dual coding in hu-
mans, which considers mental imagery as supporting a
kind of visuospatial thought separate from language. In
dual coding, visuospatial cognition runs parallel to lin-
guistic cognition, although the two systems support one
another. For example, we gain information simultane-
ously from both spoken words and the prosodic manner
in which they are articulated. We can straightforwardly
relate this to programming languages; discrete symbols
are expressed within linguistic grammar, supplemented by
visuospatial arrangement expressing paralinguistic struc-
ture. The computer generally only attends to the first, but
the human is able to attend to both.

Magnusson [14] describes a fundamental difference
between acoustic and digital music instruments in the way
we play them. He rightly points out that code does not
vibrate, and so we cannot learn a computer music lan-
guage with our bodies, in the same way as an acoustic in-
strument. However, programmers still have bodies which
shape their thoughts, and in turn, through secondary no-
tation, shape their code. Programmers do not physically
resonate with code, but cognitive resources grounded in
their perceptual acuity enables them to take advantage of
visuospatial cognition in their work.

Figure 1. The robots of the Al-Jazari language by Dave
Griffiths [16]. Each robot has a thought bubble containing
a small program, edited through a game pad.

We have seen that visuospatial arrangement is of vi-
tal importance to the notation of Patcher languages, de-
spite not being part of syntax. Our assertion follows
that if shape, geometry and perceptual cues are so im-
portant to human understanding, then we should look for
ways of taking these aspects out of secondary notation
and make them part of primary syntax. Indeed, some lan-
guages, including recently developed music programming
languages already have.

5. GEOMETRY AS SYNTAX

Artists often lead the way in technology, and program-
ming language design is no exception. We are there-
fore able to highlight some examples of computer mu-
sic languages which include geometrical measures of spa-
tial arrangement in their primary syntax. Firstly, Nodal is
a commercial environment for programming agent-based
music [15]. Nodal has several interesting features, but is
notable here for its spatial syntax, where distance symbol-
ises elapsed time. As the graph is read by the interpreter,
musical events at graph nodes are triggered, where the
flow of execution is slowed by distance between nodes.
Colour also has syntactic value, where paths are identified
by one of a number of hues.

Al-Jazari is one of a series of playful languages cre-
ated by Dave Griffiths, based on a computer game engine
and controlled by a gamepad [16]. In Al-Jazari, cartoon
depictions of robots are placed on a grid and given short
programs for navigating it, in the form of sequences of
movements including interactions with other robots. As
with Nodal, space maps to time, but there is also a mecha-
nism where robots take action based on the proximity and
orientation of a another robot. In programming Al-Jazari
you are therefore put in the position of viewing a two di-
mensional space from the point of view of an agent’s flow
of execution. Indeed it is possible to make this literally
so, as you may switch from the ‘crows nest’ view shown
in Figure 1 to the ‘first-person’ view of a robot.

Our final example is the ReacTable [17], a celebrated
‘tangible’ interface aimed towards live music. Its cre-
ators do not describe the ReacTable as a programming
language, and claim its tangible interface overcomes in-
herent problems in visual programming languages such
as Pure Data. But truly, the ReacTable is itself a vi-
sual programming language, if an extraordinary one. It
has a visual syntax, where physical blocks placed on the
ReacTable are identified as symbols, and connected ac-
cording to a nearest neighbour algorithm. Not only that,
but relative distance and orientation between connected
symbols are parsed as values, and used as parameters to
the functions represented by the symbols. Video is back-
projected onto the ReacTable surface to give feedback to
the musician, for example by visualising the sound signal
between nodes. The ReacTable has also been repurposed
for an experimental interface for making graphics [18],
suggesting that the ReacTable is not as far from a general
programming language as it may first appear.

6. COGNITIVE DIMENSIONS OF NOTATION

Before moving to our practical contribution, we backtrack
slightly to find support for our discussion from the psy-
chology of programming literature. The Cognitive Di-
mensions of Notation (CDN) framework is designed to aid
discussion of programming language features [9]. Rather
than a checklist of good design, it describes a set of fea-
tures which may be desirable or not, depending on the
context. These are known as dimensions, indicating that
they are not absolutes but scales. As illustrative examples,
one dimension is viscosity, how easy it is to modify a pro-
gram, and another is closeness of mapping, how related
the programming notation is to the program output. If we
change a notation to increase closeness of mapping, then
viscosity is likely to increase, a factor which is usually
undesirable. For brevity the reader is referred to Black-
well and Green [9] for full description of the dimensions,
although thanks to the descriptive names given to the di-
mensions this is not strictly necessary for cursory under-
standing of the following.

The CDN is particularly useful to the design of Do-
main Specific Languages (DSLs), allowing consideration
of the particular demands of a task domain in terms of
trade-offs between notational features. Blackwell and
Collins [19] have already examined the live coding do-
main with respect to the CDN, using it to compare the
ChucK language [2] with the commercial Ableton Live
production software. ChucK, and by implication live cod-
ing, does not come off particularly well. It has low vis-
ibility, closeness of mapping and role-expressiveness, is
error-prone and requires hard mental operations in part
to deal with its high level of abstraction. It would seem
that the progressive evaluation and representational ab-
straction offered by ChucK come at a cost. Nonetheless,
these are costs that many are willing to overcome through
rigorous practice regimes reminiscent of instrumental vir-
tuosos [20]. They are willing to do so because abstraction,

while taking the improviser away from the direct manip-
ulation that instrumentalists enjoy, allows them to focus
on the compositional structure behind the piece. Being
able to improvise music by manipulating compositional
structure in theoretically unbound ways is too attractive a
prospect for many to ignore.

Established norms place the live coder in a stage area
separate from their audience members1, who depending
on the situation, may listen and watch passively or interact
enthusiastically, perhaps by dancing, shouting or scream-
ing. We therefore have two groups to consider; the per-
formers needing to work ‘in the moment’ without techni-
cal interruptions that may break creative flow [23], and the
audience members needing to feel included in the event,
while engaged in their own creative process of musical
interpretation. There is a challenge then in reconsider-
ing live coding interfaces, creating new languages posi-
tioned at a place within the CDN well suited for a broader
base of musicians and audiences who may wish to engage
with them. The question is not just how musicians can
adapt to programming environments, but also the inverse;
how may programming environments, often designed to
meet the needs of business and military institutions, be
rethought to meet the particular needs of artists? First, we
should consider what those needs might be.

An interesting cognitive dimension with respect to live
coding is error-proneness. There are different flavours of
error, some of which are much celebrated in electronic
music, for example the glitch genre grew from an interest
in mistakes and broken equipment [24]. In improvisation,
an unanticipated outcome can provide a creative spark that
leads a performance in a new direction. We would classify
such desirable events as semantic aberrations, in contrast
with syntactical errors which lead to crashes and hasty
bug-fixing.

Turkle and Papert [25] draw a distinction between the
programming style of planners and of bricoleurs. Brico-
lage programming is described in terms of the creative
feedback loop adopted by many artists, who rather than
having a separate design and implementation phase, in-
stead design while implementing, deciding what to do
next in response to every action. While Turkle and Papert
[25] lack strong scientific grounding for many of their as-
sertions [26], the idea of bricolage programming has rel-
evance within a wide discourse. This feedback loop can
be seen for example in the theory of creative motion re-
lated by the celebrated painter Paul Klee [27], and can be
more generally related to theory of reflective practice in
professional studies [28]. We follow our earlier work [6]
in making a practical connection between bricolage pro-
gramming and the arts. Bricolage is particularly relevant
to the present theme of live coding, where ‘blank slate’
improvisations are the norm, with risk embraced and pre-
planning eschewed. The aim is to design a program ‘in
the moment’ where it is implemented and executed for
the (presumed) enjoyment of an audience.

1Performance norms are of course extensively challenged both inside
[21] and outside [22] live coding practice.

In terms of the CDN, bricolage programming re-
quires high visibility of components, in particular favour-
ing shorter programs that fit on a single screen, and avoid-
ing unnecessary abstraction. Here is a conflict – as noted
above abstraction sets live coding apart from other ap-
proaches to improvisation in computer music, but also
acts as an obstacle to bricolage programming. We are
pulled in different directions, and so look for the happi-
est medium, a common result from taking a CDN per-
spective. Some programmers, known in some quarters as
‘architecture astronauts’, enjoy introducing many layers
of abstraction that only serve to obfuscate [29]. Bricolage
programmers are the opposite in wanting to be as close
to their work as possible. This is not however a case of
removing all abstraction, but finding the right level of ab-
straction for the work. Programming after all is an activ-
ity that takes place somewhere between electronic transis-
tors and lambda calculus – the trick is finding the right
level of abstraction for the problem domain. Accordingly
a computer musician may find having to deal with indi-
vidual notes a distraction, and that a layer of abstraction
above them provides the creative surface where they can
feel closest to their composition.

7. INTRODUCING TEXTURE

We now introduce Texture, a visual programming lan-
guage for the live coding of pattern, designed predomi-
nantly for beat-driven techno performances. The name
Texture is intended to accentuate the role of text in pro-
gramming, as a structure woven into a two dimensional
surface. An important design aim for Texture is to cre-
ate a programming notation suitable for short, impro-
vised scripts, allowing fast manipulation by an improviser,
where lay audience members may appreciate more of the
structure behind the code, made explicit through cues that
are both visual and syntactical. Here we describe Texture
as an early prototype system, describing the thinking be-
hind it and issues raised through its development and early
use.

The Texture environment and parser is implemented
in C, using the free/open source Clutter graphics library
(http://clutter-project.org/) for its user in-
terface. It compiles into Haskell code, dynamically passed
straight to the Haskell interpreter whenever the code is
modified. Haskell then takes care of the task of evaluating
the code and scheduling sound events accordingly, using
the Tidal library created by the first author. Details of how
the patterns are represented and transformed are given by
McLean and Wiggins [30] and will not be repeated here.
Much of Haskell’s type system is re-implemented in Tex-
ture, the present contribution is not to provide a whole
new language, but a complementary visual syntax.

The following is illustrated with real examples from
the Texture user interface. Texture makes use of colour
syntax highlighting, which for the purposes of printed pro-
ceedings has been switched off. We will however con-
clude with a colour example for the benefit of those read-

http://clutter-project.org/

ing via electronic means.

7.1. Geometric relationships

A program written in Texture is composed of strongly
typed values and higher order functions. For example
the function + takes two numbers as arguments (either
integers or reals, but not a mixture without explicit
conversion), and returns their sum. Here is how 1 +2

looks in Texture:

Two grey lines emerge from the bottom right hand side
of the function +, both travelling to the upper left hand
side of its first argument 1, and then one travelling on to
the second argument 2. The significance of this will be-
come clear later, but for now we note that the number of
lines gives the function’s arity2.

The programmer types in functions and values, but
does not manually add the lines connecting them, as they
would with a Patcher language. The lines are instead
drawn automatically by the language environment, in-
ferred according to a simple rule: the closest two sym-
bols connect, followed by the next two closest, and so
on. Functions and values may be moved freely with the
mouse, where a move may change the topology of the
graph, which updates automatically. There is one impor-
tant caveat here – symbols only connect if they are type-
compatible, as we explain later.

Texture has prefix notation (also known as Polish
notation) where the function comes first, followed by
its arguments, although the symbols can be placed and
moved anywhere on the screen. For example 2 +1 may
be expressed as either of the following:

Again, the symbols connect automatically, closest
first, where ‘closest’ is defined as Euclidean distance in
two dimensional space. If a symbol is moved, the whole
program is re-interpreted, with connections re-routed ac-
cordingly. The functions may be composed together as
you might expect. Here is (1 +2) +(3 +4) in Texture:

Texture is geared towards terse, higher order program-
ming such as the following:

2A function’s arity is simply the number of arguments it requires

The + function is only given a single value, despite
having arity of two. The result is a function that (in this
case) adds three to a given number. This function is an
argument passed to fmap, which applies the function to
the members of its second argument, a list. In other words,
the function +3 is mapped over the members in the list
[2, 4, 5], which would result in [5, 7, 8]. A list is
made simply by placing square brackets around values of
the same type.

The use of +3 as a function deserves more explana-
tion for those unfamiliar with this technique. This is made
possible by functions being automatically curried, a fea-
ture taken from Haskell. This means that functions can be
partially applied. In this example we fix the first argument
as 3, getting back a new function which takes a single ar-
gument. This is what the visual lines in Texture represent,
the application of each argument creating a new function
with arity reduced by one. We believe this visual repre-
sentation of curried functions to be novel, although would
be pleased to hear of prior art.

The strong typing in Texture (again, taken from
Haskell) places great restrictions on which arguments may
be applied to which functions. This “bondage and disci-
pline” works out well for Texture, as it limits the num-
ber of possible connections, making it easy for the pro-
grammer to predict what will connect where. They are
aided further by colours used to identify types as shown
in Figure 2 – only like colours connect. The fmap func-
tion is polymorphic, in that it can take any kind of func-
tion and apply it to any kind of list. But the strong typing
means that those two kinds must be the same. For ex-
ample, you cannot apply a string function to the elements
of a list of integers, unless you also supply a conversion
function. Through this mechanism, Texture enforces type
correctness, avoiding all possibility of syntactically incor-
rect code.

7.2. User Interface

The Texture user interface is centred around typing, edit-
ing and moving words. In fact that is all you can do – there
are no menus or key combinations. A new word is created
by moving the cursor to an empty part of the screen using
the mouse, and then typing. The word is completed by
pressing the space bar, at which point the cursor moves a
little to the right where the next word can be begun, mim-
icking a conventional text editor. A word is edited by be-
ing given focus with a click of the mouse, or moved by
holding down the shift key while being dragged with the
mouse. A whole function tree (the function and its con-
nected arguments) is moved by holding down shift while
dragging, although the arguments may connect differently
in the new location according to the new context.

7.3. Musical Texture

Having seen much of the technical detail of Texture, we
turn to its musical context. A video showing Texture in

Figure 2. The Texture interface shown in colour, viewable via electronic proceedings. This program describes a layered
drum loop with beat rotation, and a bass line with an octave shift, both with polyrhythmic variation of timbre/effects.

use is available at the website given at the end of this pa-
per.

Texture is a prototype language that has not yet under-
gone full examination through HCI study, however pre-
liminary observations have been conducted. In particular
a small workshop for six participants was arranged with
the Access Space free media lab in Sheffield, and led by
the first author. The participants were self-selecting on a
first-come-first-served basis, and all were male, between
23 and 42 years of age. Four lived locally to Sheffield, and
two travelled from Liverpool. All were keen musicians,
but only two had prior experience of programming. The
workshop was free of charge, being part of a programme
funded by the Arts Council, England. Participants were
free to leave at any time with no penalty, but all stayed to
the end.

The workshop was in the form of an hour long presen-
tation surveying live coding practice and other influences
of Texture, followed by a three hour hands-on workshop.
The first half of the hands-on section introduced tech-
niques on a projected display, which participants, while
listening on headphones, copied and adapted in explo-
ration of their use. The second half was more freeform,
where each participant had their own set of stereo speak-
ers at their computers. The participants were playing to a
globally set tempo, with accurate time synchronisation.3

This meant that they were able to respond to each other’s
patterns, improvising music together; because of the lay-
out of the room, it was only really possible to clearly hear
the music of immediate neighbours. Recorded video taken
from this part of the workshop is available on the website
given at the end of this paper.

3Accurate time synchronisation was made possible by the netclock
protocol.

The participants were the first people to use Texture
besides the present author, and so there was some risk of
unanticipated technical problems or task difficulty. How-
ever all showed enthusiasm, were keen to explore the lan-
guage, and joined in with playing together over speakers.

The participants were surveyed for opinions through
an anonymous on-line questionnaire. This was done in
two parts, immediately before and then immediately after
the workshop. They were asked to rate their agreement
with three statements both before and after the workshop,
on a scale from Disagree Strongly (1) to Agree Strongly
(5). Although there is little statistical power for such
a small group, feedback from these individuals was en-
couraging for a system at such an early stage of develop-
ment. Agreement with “I am interested in live coding”
fell slightly from 3.8 to 3.7. Agreement with “I am a live
coder” rose from a mean of 1.5 to 3.1. Agreement with
“I would like to be a live coder” was static at a mean of
3.5. A final statement given only at the end “I would like
to use Text[ure] again” was met with mean agreement of
3.7.

Participants were also given freeform questions ask-
ing what they liked and disliked about Texture, how much
they felt they understood the connection between the vi-
sual representation and the sound, and soliciting sugges-
tions for improvements. Dislikes and suggestions fo-
cussed on technical interface issues such as the lack of
‘undo’, and three found the automatic linking difficult to
work with. On the other hand, three participants reported
liking how quick and easy it was to make changes.

7.4. Cognitive Dimensions of Texture

Texture is designed for the improvisation of musical pat-
tern, as a visual programming interface to the Tidal pattern

http://access-space.lowtech.org
http://netclock.slab.org

library [30]. The result is a more tightly constrained sys-
tem than many programming languages for music, which
include extensive facilities for low level sound synthesis.
While the ability to compose right from the micro-level of
the sound signal offers great possibilities, it comes with
trade-offs, in particular along the hard mental operations
and diffuseness (verbosity) CDNs.

The visibility of Texture is excellent, where a com-
plex rhythm can be notated on a single screen. We find
that Texture also has high closeness of mapping, as the vi-
sual representation of trees within trees corresponds well
with the hierarchical structure of the pattern that is be-
ing composed. This echoes the tree structures common
in music analysis, and indeed we would expect significant
correspondence between the Texture structure and the lis-
tener’s perception of it. The extent to which an untrained
listener may relate the structure they hear with the Texture
program they see is an empirical question, but we suspect
that further development is needed to support this.

Creative use of Texture is aided not only by high vis-
ibility but also aspects of provisionality. A programmer
may work on a section of code and drag it into the main
body of the program when it is ready. They may also drag
part of the code out of the main body and reuse it else-
where later. The code must always be syntactically cor-
rect, but unless it connects to a function representing OSC
messages sent to a synthesiser, it will have no effect.

The error-proneness of Texture is well positioned. It
is impossible to make syntax errors in Texture, and while
the automatic connection can at times have unexpected re-
sults, the result is at times musically interesting, but oth-
erwise straightforward to reverse.

8. FUTURE DIRECTIONS

Texture is a working prototype, in that it is fully functional
as a live music interface, but is a proof of concept of an
approach to programming that brings many further ideas
to mind.

In terms of visual arrangement, Texture treats words
as square objects, but perhaps the individual marks of the
symbols could be brought into the visual notation, through
experiments in typography. For example, a cursive font
could be used where the trajectory of the final stroke in
a word is continued with a spline curve to flow into the
leading stroke of the word it connects to. This suggestion
may turn the stomach of hardened programmers, although
Texture is already unusual in using a proportional font,
complete with ligatures.

Currently there is no provision in Texture for mak-
ing named abstractions, so a piece of code can only be
used once in a program. Visual syntax for single assign-
ment could symbolise a section of code with a shape de-
rived from the arrangement of its components. That shape
would become an ideographic symbol for the code, and
then be duplicated and reused elsewhere in the program
using the mouse.

Texture is inspired by the ReacTable, but does not fea-

ture any of the ReacTable’s tangible interaction. Such
tabletop interfaces offer a number of advantages over
keyboard-and-mouse interfaces, in particular multitouch,
allowing movement of more than one component at once.
Multi-touch tablet computers share this advantage while
avoiding some of the tradeoffs of tangible interfaces.
Much of the ReacTable technology is available as an open
research platform, and could be highly useful in this area
of experimentation.

Currently the only output of Texture is music rendered
as sound, with no visual feedback. There is great scope
for experimentation in visualising the patterns in the code,
making it easier for live coders and audience members to
connect musical events and transformations with particu-
lar sections of the code. One approach would be the visu-
alisation of pattern flowing between nodes, again inspired
by the ReacTable, however as Texture is based upon pure
functions rather than dataflow graphs, it presents a rather
different design challenge. As Texture allows any Haskell
program to be written, it could be applied to other do-
mains, such as digital signal processing and visual anima-
tion. This would again place different challenges on the
visualisation of results.

Most generally, and perhaps most importantly, we
look towards proper analysis of lay audience code com-
prehension, grounding further development with better
understanding of what the design challenges are.

9. CONCLUSION

We have considered programming languages as rich nota-
tions with both visual and linguistic aspects. Many com-
puter musicians write words to describe their music, for
computers to translate to sound. Computer musicians
have become comfortable with this rather odd process in
private, but perhaps found it difficult to explain to their
parents. Simply by projecting their interfaces, live coders
have brought this oddity out in public, and must deal
with the consequences of bringing many issues underly-
ing computer music to the surface.

Live coding performance should be understood in
terms of the dual activity of language and spatial percep-
tion. We have seen how humans have the capacity to in-
tegrate both simultaneously, showing that the act of live
coding, and perhaps the audience reception of it, can be
realised and felt simultaneously as both musical language
and musical movement.

We have provided psychological and analytical back-
ground to the design of live coding languages, as sign-
posts for future work. We hope the introduction of Tex-
ture demonstrates the exciting ground waiting for future
languages to explore.

Full source code for Texture and supporting libraries
is available under the GNU Public License version 3, from
http://yaxu.org/category/texture/.

http://yaxu.org/category/texture/

References
[1] A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,

D. Griffiths, N. Collins, and A. Alexander, “Live al-
gorithm programming and a temporary organisation
for its promotion,” in read me — Software Art and
Cultures, O. Goriunova and A. Shulgin, Eds., 2004.

[2] G. Wang and P. R. Cook, “On-the-fly programming:
using code as an expressive musical instrument,” in
Proceedings of the 2004 conference on New inter-
faces for musical expression. National University
of Singapore, 2004, pp. 138–143.

[3] I. Kupka and N. Wilsing, Conversational Lan-
guages. John Wiley and Sons, 1980.

[4] J. Rohrhuber, A. de Campo, and R. Wieser, “Algo-
rithms today: Notes on language design for just in
time programming,” in Proceedings of the 2005 In-
ternational Computer Music Conference, 2005.

[5] A. Sorensen and H. Gardner, “Programming
with time: cyber-physical programming with im-
promptu,” in Proceedings of ACM OOPLSA, 2010,
pp. 822–834.

[6] A. McLean and G. Wiggins, “Bricolage program-
ming in the creative arts,” in 22nd Psychology of
Programming Interest Group, 2010.

[7] N. Collins, “Generative music and laptop perfor-
mance,” Contemporary Music Review, vol. 22, 2003.

[8] A. F. Blackwell, “Metacognitive theories of visual
programming: what do we think we are doing?”
in Proceedings of IEEE Symposium on Visual Lan-
guages, 2006, pp. 240–246.

[9] A. Blackwell and T. Green, Notational Systems –
the Cognitive Dimensions of Notations framework.
Morgan Kaufmann, 2002, pp. 103–134.

[10] M. Puckette, “The patcher,” in Proceedings of Inter-
national Computer Music Conference, 1988.

[11] W. Kohler, Gestalt Psychology. Camelot Press,
1930.

[12] K. Rayner and A. Pollatsek, Word Perception. Rout-
ledge, Nov. 1994, ch. 3.

[13] A. Paivio, Mental Representations: A Dual Coding
Approach (Oxford Psychology Series). Oxford Uni-
versity Press, USA, Sep. 1990.

[14] T. Magnusson, “Of epistemic tools: musical instru-
ments as cognitive extensions,” Organised Sound,
vol. 14, no. 2, pp. 168–176, 2009.

[15] P. Mcilwain, J. Mccormack, A. Dorin, and A. Lane,
“Composing with nodal networks,” in Proceedings
of the Australasian Computer Music Conference
2005, T. Opie and A. Brown, Eds., 2005, pp. 96–
101.

[16] A. McLean, D. Griffiths, N. Collins, and G. Wig-
gins, “Visualisation of live code,” in Proceedings of
Electronic Visualisation and the Arts London 2010,
2010.

[17] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrun-
ner, “The reacTable: Exploring the synergy between
live music performance and tabletop tangible inter-
faces,” in Proc. Intl. Conf. Tangible and Embedded
Interaction (TEI07), 2007.

[18] D. Gallardo, C. F. Julià, and S. Jordà, “Tur-
Tan: a tangible programming language for creative
exploration,” in Third annual IEEE international
workshop on horizontal human-computer systems
(TABLETOP), 2008.

[19] A. Blackwell and N. Collins, “The programming
language as a musical instrument,” in Proceedings
of PPIG05. University of Sussex, 2005.

[20] N. Collins, “Live coding practice,” in Proceedings of
New Interfaces for Musical Expression 2007, 2007.

[21] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van
Kampen, E. Ho, and H. Hölzl, “Purloined letters and
distributed persons,” in Music in the Global Village
Conference, 2007.

[22] C. Small, Musicking: The Meanings of Performing
and Listening (Music Culture), 1st ed. Wesleyan,
Jun. 1998.

[23] M. Csikszentmihalyi, Flow: the psychology of opti-
mal experience. HarperCollins, 2008.

[24] K. Cascone, “The aesthetics of failure: ”Post-
Digital” tendencies in contemporary computer mu-
sic,” Computer Music Journal, vol. 24, no. 4, pp.
12–18, 2000.

[25] S. Turkle and S. Papert, “Epistemological plural-
ism and the revaluation of the concrete,” Journal
of Mathematical Behavior, vol. 11, no. 1, pp. 3–33,
Mar. 1992.

[26] A. Blackwell, “Gender in domestic programming:
From bricolage to séances d’essayage,” in CHI
Workshop on End User Software Engineering, 2006.

[27] P. Klee, Pedagogical sketchbook. Faber and Faber,
1953.

[28] D. A. Schon, The Reflective Practitioner: How Pro-
fessionals Think In Action, 1st ed. Basic Books,
Sep. 1984.

[29] J. Spolsky, Don’t Let Architecture Astronauts Scare
You. Apress, Aug. 2004, pp. 111–114.

[30] A. McLean and G. Wiggins, “Tidal - pattern lan-
guage for the live coding of music,” in Proceedings
of the 7th Sound and Music Computing conference,
2010.

	1 Introduction: From Time to Space – Directions in Live Coding
	2 Obscurantism is dangerous. Show us your screens.
	3 Patcher Languages
	4 Code and Mental Imagery
	5 Geometry as Syntax
	6 Cognitive Dimensions of Notation
	7 Introducing Texture
	7.1 Geometric relationships
	7.2 User Interface
	7.3 Musical Texture
	7.4 Cognitive Dimensions of Texture

	8 Future directions
	9 Conclusion

