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Abstract. The Semantic Web is not semantic. It is good for syllogistic reasoning, but 
there is much more to semantics than syllogisms. I argue that the current Semantic 
Web is too dependent on symbolic representations of information structures, which 
limits its representational capacity. As a remedy, I propose conceptual spaces as a 
tool for expressing more of the semantics. Conceptual spaces are built up from 
quality dimensions that have geometric or topological structures. With the aid of the 
dimensions, similarities between objects can easily be represented and it is argued 
that similarity is a central aspect of semantic content. By sorting the dimensions into 
domains, I define properties and concepts and show how prototype effects of 
concepts can be treated with the aid of conceptual spaces. I present an outline of how 
one can reconstruct most of the taxonomies and other meta-data that are explicitly 
coded in the current Semantic Web and argue that inference engines on the symbolic 
level will become largely superfluous. As an example of the semantic power of 
conceptual spaces, I show how concept combinations can be analysed in a much 
richer and more accurate way than in the classical logical approach.  

 
 

1 The dream of the Semantic Web 

Given the enormous amount of information on the Internet, it is becoming ever more 
important to find methods for information integration. The Semantic Web is the most well 
known recent attempt in this direction. In an introductory article, Berners-Lee, Hendler and 
Lassila [3] write that “the Semantic Web is an extension of the current web in which 
information is given well-defined meaning, better enabling computers and people to work 
in cooperation.” The ambition of the Semantic Web is excellent, but, so far, most work has 
been devoted to developing languages such as RDF for representing information and OWL 
for expressing ontologies. In my opinion, to enable “computers and people to work in 
cooperation” one should, above all, take into consideration how humans process concepts. 
As I shall argue in this article, this will be necessary if we want to put real semantic content 
into the Semantic Web. 

The dream of the Semantic Web is to develop one ontology expressed in one language 
potentially covering everything that exists on the web. Berners-Lee [2] writes: “The 
Semantic Web is what we will get if we perform the same globalization process to 
Knowledge Representation that the Web initially did to Hypertext. We remove the 
centralized concepts of absolute truth, total knowledge, and total provability, and see what 
we can do with limited knowledge.” As Noy and McGuinness [37] note, there are several 
excellent reasons for developing ontologies: to share a common understanding of the 
structure of information among people; to enable reuse of domain knowledge; to make 



 

domain assumptions explicit; to separate domain knowledge from the operational 
knowledge; and to analyse domain knowledge. The question is whether the ontologies as 
we know them from the current Semantic Web are the best tools to achieve these goals. 

In reality, the picture is not so beautiful: there are several ontologies in several 
languages covering partly overlapping subdomains of the web. And the formalisms 
encounter several kinds of integration problems, including structural heterogeneity, 
semantic heterogeneity, inconsistency and redundancy problems [47]. Shirky [42] 
summarizes the state of the art as follows: “The Semantic Web, with its neat ontologies and 
its syllogistic logic, is a nice vision. However, like many visions that project future benefits 
but ignore present costs, it requires too much coordination and too much energy to effect in 
the real world, where deductive logic is less effective and shared world view is harder to 
create than we often want to admit.”  

One may even question whether we really need the meta-data provided by the Semantic 
Web. Uschold [46] points out that sometimes information integration works anyway, for 
example in web shopping agents. He writes that “[s]hopping agents can work even if there 
is no automatic processing of semantics; they can work without any formal representations 
of semantics; they can even work with no explicit representations of semantics at all. The 
key to enabling shopping agents to automatically use web content is that the meaning of the 
web content that the agents are expected to encounter can be determined by the human 
programmers who hardwire it into the web application software.” The reason this can be 
done is that the terminology involved in web shopping application is comparatively limited 
and free from ambiguities. 
 

2 The Semantic Web is not semantic 

My main point of criticism is that the Semantic Web is not very semantic. At best, it is 
ontological. From a philosopher’s point of view, it is not even ontological, since the 
formalisms exploited only provide a partial description of what a metaphysician would call 
an ontology. Berners-Lee, Hendler and Lassila [3] have the following comment: “Artificial-
intelligence and Web researchers have co-opted the term for their own jargon, and for them 
an ontology is a document or file that formally defines the relations among terms. The most 
typical kind of ontology for the Web has a taxonomy and a set of inference rules.” Even if 
we grant that the Semantic Web is ontological, it contains a number of competing 
ontologies that make information integration very problematic. Furthermore, the 
methodology of the Semantic Web puts too much emphasis on symbolic structures. This 
will be the topic of next section.  

Why do I say that the Semantic Web is not semantic? Let us consider what can be 
expressed in, for example OWL (as far as I understand, other tools for the Semantic Web 
have similar properties). McGuinness and Hamelen [28] write that on top of RDF 
descriptions “OWL adds more vocabulary for describing properties and classes: among 
others, relations between classes (for example disjointness), cardinality (for example 
“exactly one”), equality, richer typing of properties, characteristics of properties (for 
example symmetry and transitivity), and enumerated classes.” These are admittedly 
important semantic notions. But they are exactly what is to be expected of a language that 
has the expressivity of first order logic and that defines all concepts (properties and 
relations) in terms of sets of objects.  
 However, there is much more to the semantics of concepts. It is an unfortunate dogma 
of computer science in general, and the Semantic Web in particular, that all semantic 
contents are reducible to first order logic or to set theory. Berners-Lee, Hendler and Lassila 
[3] claim that “[f]ortunately, a large majority of the information we want to express is along 
the lines of 'a hex-head bolt is a type of machine bolt'.” Unfortunately, this is not true. If one 



 

considers how humans handle concepts, the class relation structures of the Semantic Web 
capture only a minute part of our information about concepts. For instance, we often 
categorize objects according to the similarity between the objects [11, 14]. And similarity is 
not a notion that can be expressed in a natural way in a web ontology language. 
 Along the same lines, Shirky [42] declares that “the Semantic Web is a machine for 
creating syllogisms.” He concludes that: “This is the promise of the Semantic Web – it will 
improve all the areas of your life where you currently use syllogisms. Which is to say, 
almost nowhere.” He adds, somewhat sarcastically: “The people working on the Semantic 
Web greatly overestimate the value of deductive reasoning (a persistent theme in Artificial 
Intelligence projects generally.) The great popularizer of this error was Arthur Conan 
Doyle, whose Sherlock Holmes stories have done more damage to people's understanding 
of human intelligence than anyone other than Rene Descartes.”  
 In my book Conceptual Spaces [11], I contrast three basic methodologies within the 
cognitive sciences for representing information: the symbolic, the associationist and the 
conceptual. In the symbolic approach, cognition is seen as essentially being computation 
involving symbol manipulation. The second approach is associationism, where associations 
between different kinds of information elements carry the main burden of representation. 
Connectionism is a special case of associationism that models associations using artificial 
neuron networks. The Semantic Web builds almost entirely on the symbolic methodology. 
The core of this paper will be to outline the conceptual approach to representations 
(sections 4-9). I shall argue that if we want to build real content into a system, one should 
rely on the conceptual methodology. 
 A remarkable feature of human thinking is our ability to combine concepts and, in 
particular, to understand new combinations of concepts [16]. Nobody has problems 
grasping the meaning of combinations like pink elephant, striped apple and cubic soap-

bubble, even if one never will encounter any object with these properties. In all kinds of 
web applications, for example query answering systems, inputs in form of combinations of 
concepts are ubiquitous. Consequently, an important criterion for a successful 
computational model of the semantics of concepts is that it should be able to handle 
combinations of concepts. 
 In classical logic and in the Semantic Web, combinations of concepts are expressed 
by conjunctions of properties. This means that the reference of the combination of two 
concepts is taken to be the intersection of the classes representing of the two individual 
concepts. However, it turns out there are many everyday combinations of concepts that 
cannot be analysed in this simplistic manner. For example, tall squirrel, honey bee, stone 

lion, and white Zinfandel (which happens to be a rosé wine) cannot be analysed in terms of 
intersections of classes. In general, current symbolic methods have serious problems 
handling concept combinations in the way humans do. 

 
 

3 Symbol grounding 

Within general Artificial Intelligence there has been much discussion concerning the so-
called “symbol grounding problem” [18]. The concern is how the symbolic expressions of 
first order logic or a programming language (including OWL and its relatives) can obtain 
any meaning that goes beyond the formal language itself – a meaning that is in some way 
“grounded” in the external world.  
 The symbol grounding problem shows up in relation to the Semantic Web in 
connection with competing ontologies. To see the point, consider how Noy and 
McGuinness [37] define this key concept: “An ontology is a formal explicit description in a 
domain of discourse (classes (sometimes called concepts)), properties of each concept 



 

describing various features and attributes of the concepts (slots (sometimes called roles or 
properties)) and restrictions on slots (facets (sometimes called role restrictions).” The key 
phrase here is “explicit description”. In languages such as DL, XML and OWL, descriptions 
are indeed explicit – this is seen as the very point of specifying an ontology.  

One way to pinpoint the symbol grounding problem for the Semantic Web is to note 
that there is no general way to resolve a conflict between two ontologies, since all 
information is syntactic, that is, expressed in symbolic structures. This makes it difficult to 
match meanings of expressions in two different ontologies Even though various techniques 
for such a matching has been attempted [47], for example by mapping different taxonomies 
onto each other, they are all far from solving the general problem. Shirky [42] makes the 
following observation about the problem: “Any attempt at a global ontology is doomed to 
fail, because meta-data describes a worldview. The designers of the Soviet library's 
cataloging system were making an assertion about the world when they made the first 
category of books "Works of the classical authors of Marxism-Leninism." Melvyl Dewey 
was making an assertion about the world when he lumped all books about non-Christian 
religions into a single category, listed last among books about religion. It is not possible to 
neatly map these two systems onto one another, or onto other classification schemes – they 
describe different kinds of worlds.” 

The source of the problem is that each ontology (together with its terminology) 
functions like a free floating island of reeds – it has no anchor in reality. And the 
“meanings” of the ontological expressions don’t live on these islands. It does not help to tie 
the islands together. To be sure, in the folklore around the Semantic Web one finds several 
special translation mechanisms to help the transition from one ontology to another (see for 
example [47]). Such a translation is a painstaking enterprise, but it does not solve the 
symbol grounding problem – even if mutually connected, the ontological islands have no 
connection with reality. 

Aiming for explicit description is one of the dogmas of the tradition of symbolic 
knowledge representations. I want to challenge that explicit symbolic characterizations of 
ontologies is the most efficient, let alone the most natural (in relation to human cognition) 
way to represent this kind of knowledge for use on the Semantic Web. Shirky [42] 
formulates the problem in the following way: “Descriptions of the Semantic Web exhibit an 
inversion of trivial and hard issues because the core goal does as well. The Semantic Web 
takes for granted that many important aspects of the world can be specified in an 
unambiguous and universally agreed-on fashion, then spends a great deal of time talking 
about the ideal XML formats for those descriptions. This puts the stress on the wrong part 
of the problem -- if the world were easy to describe, you could do it in Sanskrit.” The main 
purpose of this article is to propose an alternative methodology and an alternative 
representational format. 

Shirky [42] presents another critical example: “Consider another description of the 
Semantic Web that similarly misconstrues the problem: 

     Merging databases simply becomes a matter of recording in RDF 
     somewhere that "Person Name" in your database is equivalent to 
     "Name" in my database, and then throwing all of the information 
     together and getting a processor to think about it. 
     [http://infomesh.net/2001/swintro/] 

No one who has ever dealt with merging databases would use the word 'simply'. If making a 
thesaurus of field names were all there was to it, there would be no need for the Semantic 
Web; this process would work today. Contrariwise, to adopt a Lewis Carroll-ism, the use of 
hand-waving around the actual problem – human names are not globally unique – masks 
the triviality of linking Name and Person Name. Is your "Person Name = John Smith" the 
same person as my "Name = John Q. Smith"? Who knows? Not the Semantic Web. The 



 

processor could "think" about this til the silicon smokes without arriving at an answer.” To 
be sure, human minds don’t work that way – they have non-symbolic representations of 
objects, individuals and concepts that help them solve questions of this kind. 

The rather radical solution I propose to circumvent the representational limitations of 
the current Semantic Web is to abandon its heavy dependence on syntactically expressed 
ontologies and go for real semantics instead. The remainder of this article will give a 
programmatic outline of how a richer semantic structure can be obtained by applying 
conceptual spaces as an underlying representational format. 

 
 

4 Conceptual spaces as a framework for semantics 

Conceptual spaces represent information by geometric structures rather than by symbols. 
Information is represented by points (standing for individuals or objects), and regions 
(standing for properties and relations) in dimensional spaces. Many semantic structures, for 
example similarity relations, can be modelled in a natural way by exploiting distances in the 
space. I call my way of representing information the conceptual form because I believe that 
the essential aspects of concept representation are best described using this approach. The 
framework presented here follows the theory put forward in my recent book Conceptual 

Spaces: The Geometry of Thought [11]. 
A conceptual space consists of a number of quality dimensions. Examples of such 

dimensions are: colour, pitch, temperature, time, weight, size and the three ordinary spatial 
dimensions. These examples are closely connected to what is produced by our sensory 
receptors. However, there are also quality dimensions that are of an abstract non-sensory 
character. For example in [12], the analysis is extended to functional concepts. 

The primary role of the dimensions is to represent various “qualities” of objects in 
different domains. Since the notion of a domain is central to my analysis, it should be given 
a more precise meaning. To do this, I rely on the notions of separable and integral 
dimensions taken from cognitive psychology [13, 26, 30]. Certain quality dimensions are 
integral in the sense that one cannot assign an object a value on one dimension without 
giving it a value on the other. For example, an object cannot be given a hue, without also 
giving it a brightness value. Or the pitch of a sound always goes along with a loudness. 
Dimensions that are not integral are said to be separable, as for example the size and hue 
dimensions. Using this distinction, the notion of a domain can now be defined as a set of 
integral dimensions that are separable from all other dimensions. As will be seen below, the 
notion of a domain is central for the reconstruction of ontologies. 

The domains form the framework used to assign properties to objects and to specify 
relations between them (see next section). The dimensions are taken to be independent of 
symbolic representations in the sense that we can represent the qualities of objects, for 
example by vectors, without presuming an explicit language in which these qualities are 
expressed. 

The notion of a dimension should be understood literally. It is assumed that each of the 
quality dimensions is endowed with certain topological or geometric structures. As a first 
example, take the dimension of time. In science, time is a one-dimensional structure that is 
isomorphic to the line of real numbers. If now is seen as the zero point on the line, the 
future corresponds to the infinite positive real line and the past to the infinite negative line.  

If it is assumed that the dimensions have a metric, one can talk about distances in the 
conceptual space. Such distances represent degrees of similarity between the objects 
represented in the space. Hence, conceptual spaces are suitable for representing different 
kinds of similarity relations. 



 

A paradigmatic example of a domain involves colour. In brief, our cognitive 
representation of colour can be described by three dimensions. The first dimension is hue, 
which is represented by the familiar colour circle. The topological structure of this 
dimension is thus different from the quality dimensions representing time or weight which 
are isomorphic to the real line. 

The second psychological dimension of colour is saturation, which ranges from grey 
(zero colour intensity) to increasingly greater intensities. This dimension is isomorphic to 
an interval of the real line. The third dimension is brightness, which varies from white to 
black and is thus a linear dimension with end points. Together, these three dimensions, one 
with circular structure and two with linear, constitute the colour domain which is a 
subspace of our perceptual conceptual space.  

This domain is often illustrated by the so-called colour spindle (see figure 1). 
Brightness is shown on the vertical axis. Saturation is represented as the distance from the 
center of the spindle. Hue, finally, is represented by the positions along the perimeter of the 
central circle. 

 

 

Figure 1: The colour spindle. 

 

I cannot provide a complete list of the quality dimensions involved in the conceptual spaces 
of humans. Some of the dimensions seem to be innate and to some extent hardwired in our 
nervous system, as for example colour, pitch, and probably also ordinary space. Other 
dimensions are presumably learned. Learning new concepts often involves expanding one's 
conceptual space with new quality dimensions. Still other dimensions may be culturally 
dependent. Finally, some quality dimensions are introduced by science. 

When it comes to implementing a knowledge representation system based on 
conceptual spaces, it is of course the programmer who decides the domains and their 
underlying structures, at least for the basic domains. This involves selecting the dimensions 
of the domain; specifying the topology or geometry of the domain; and, in the case of a 
metric space, specifying its metric. A rule of thumb for the metric is that integral 
dimensions combine by the Euclidean metric, while separable dimensions combine by the 
city-block (Minkowski) metric. In section 10, I shall discuss some of the computational 
aspects of this process. 



 

5 Properties and concepts 

The theory of conceptual spaces will first be used to provide a definition of a property. I 
propose the following criterion [6, 8] where the geometric characteristics of the quality 
dimensions are utilized to introduce a spatial structure for properties: 
 

Criterion P:  A property is a convex region in some domain. 
 
The motivation for the criterion is that if some objects which are located at v1 and v2 in 
relation to some quality dimension (or several dimensions) are both examples of the 
property C, then any object that is located between v1 and v2 on the quality dimension(s) 
will also be an example of C. Criterion P presumes that the notion of betweenness is 
meaningful for the relevant quality dimensions. This is, however, a rather weak assumption 
which demands very little of the underlying geometric structure.  

Criterion P does not presume that one can identify sharp borders between properties; it 
can be applied also to fuzzy properties or properties that are defined by probabilistic criteria. 
This is an advantage over most existing web ontologies. What convexity requires is that if 
two object locations v1 and v2 both satisfy a certain membership criterion, for example, has 
a certain degree or probability of membership, then all objects between v1 and v2 also 
satisfy the criterion. 

Most properties expressed by simple words in natural languages seem to be natural 
properties in the sense specified here. For instance, I conjecture that all colour terms in 
natural languages express natural properties with respect to the psychological representation 
of the three colour dimensions. It is well-known that different languages carve up the colour 
circle in different ways [4], but all carvings seems to be done in terms of convex sets [11, 
43].  

Properties, as defined by criterion P, form a special case of concepts. I define this 
distinction by saying that a property is based on a single domain, while a concept may be 
based on several domains. The distinction between properties and concepts has been 
obliterated in the symbolic as well as connectionist representations that have dominated the 
discussion in the cognitive sciences. In particular, both properties and concepts are 
represented by predicates in first order languages. In web ontology languages,  matters are 
made even less semantic by making classes the central units (classes are just the extensions 
of properties and concepts). The predicates of a first order language correspond to several 
different grammatical categories in a natural language, most importantly those of adjectives, 
nouns and verbs. The main semantic difference between adjectives and nouns, on the one 
hand, is that adjectives like “red,” “tall,” and “round” normally refer to a single domain and 
thus represent properties, while nouns like “dog,” “apple” and “town” normally contain 
information about several domains and thus represent concepts. Verbs, on the other hand, 
are characterized by their temporal structure, that is, they essentially involve the time 
dimension. 

Let us now focus on the differences between single-domain properties and multi-
domain concepts. As a paradigm example of a concept that is represented in several 
domains, consider “apple” (compare [45]). The first problem when representing a concept 
is to decide which are the relevant domains. When we encounter apples as children, the first 
domains that we learn about are presumably colour, shape, texture and taste. Later, we learn 
about apples as (biological) fruits, about their nutritional value, and possibly about some 
further dimensions. It should be noted that I do not require that a concept should be 
associated with a closed set of domains. On the contrary, this set may be expanded as one 
learns about further aspects of a concept. 



 

The next problem is to determine the geometric structure of the domains. Taste space 
can presumably be represented by the four dimensions sweet, sour, salty and bitter and the 
colour domain by hue, saturation and brightness. Other domains are trickier: it is difficult to 
say much about, for example, the topological structure of “fruit space.” Some ideas about 
how “shape space” should be modelled have been discussed in, for example [5, 7, 8, 11, 
27]. Textures could possibly be modelled using fractal theory [39]. Instead of giving a 
detailed presentation of the geometric structures of the different domains, let me represent 
the “apple” regions verbally as follows: 

Domain   Region 

Colour   Red-yellow-green 

Shape   Roundish (cycloid) 

Texture   Smooth 

Taste   Regions of the sweet and sour dimensions  

Fruit   Specification of seed structure, flesh and peel type, 

   etc, according  to principles of pomology 

Nutrition   Values of sugar content, vitamins, fibres, etc 

When several domains are involved in a representation, some principle for how the 
different domains are to be weighed together must be assumed. These weights influence the 
distances in the conceptual space. The relative weights of the domains depend on the 
context in which the concept is used. Hence, I assume that in addition to the regions 
associated with each domain, the concept representation contains information about the 
prominence of the different domains. This aspect of concepts is not represented in existing 
web ontologies. The prominence values of different domains determine which associations 
can be made and thus which inferences can be triggered by a particular use of a concept (see 
[9]). The prominence values can change with the context, and with the knowledge and 
interests of the user. For example, if you are eating an apple, its taste will be more 
prominent than if you are using an apple as a ball when playing with an infant, which would 
make the shape domain particularly prominent. 

Concepts are not just bundles of properties. The proposed representation for a concept 
also includes an account of the correlations between the regions from different domains 
that are associated with the concept. In the “apple” example there is a very strong (positive) 
correlation between the sweetness in the taste domain and the sugar content in the nutrition 
domain and a weaker correlation between the colour red and a sweet taste. 

These considerations of prominence and correlations motivate the following definition 
of concept representation: 

 

Criterion C: A concept is represented as a set of convex regions in a number of 
domains together with a prominence assignment to the domains and information about how 
the regions in different domains are correlated.  

 
 

6 Connections to prototype theory 

 

Criterion P (and thereby also Criterion C) derives independent support from the prototype 

theory of categorization developed by Rosch and her collaborators (see, for example [22, 
31, 40,41]). The main idea of prototype theory is that within a category of objects, like 
those instantiating a property or a concept, certain members are judged to be more 
representative of the category than others. For example robins are judged to be more 
representative of the category “bird” than are ravens, penguins and emus; and desk chairs 
are more typical instances of the category “chair” than rocking chairs, deck-chairs, and 



 

beanbag chairs. The most representative members of a category are called prototypical 
members. 

In the classical Aristotelian theory of concepts [44], a concept is defined via a set of 
necessary and sufficient properties. To a large extent, web ontologies follow this ideal in 
their characterizations of concepts. Consequently, all instances of a classical concept have 
equal status. However, another part of prototype theory says that concepts show graded 
membership, determined by how representative the members are. It is well-known that 
some properties, such as “red” and “bald” have no sharp boundaries, and for these it is 
perhaps not surprising that one finds prototypicality effects. However, these effects have 
been found for most concepts including those with comparatively clear boundaries like 
“bird” and “chair.” 

When natural properties are defined as convex regions of a conceptual space, prototype 
effects are indeed to be expected. In a convex region, one can describe positions as being 
more or less central. In particular, if the space has a metric, one can calculate the centre of 
gravity of a region.  

It is possible to argue in the converse direction too and show that if prototype theory is 
adopted, then the representation of properties as convex regions is to be expected, at least in 
metric spaces. Assume that some quality dimensions of a conceptual space S are given, for 
example the dimensions of colour space, and that we want to partition it into a number of 
categories, for example colour categories. If we start from a set of prototypes p1, ..., pn of 
the categories, for example the focal colours, then these should be the central points in the 
categories they represent. If we make the additional assumption that S is a metric space, the 
information about prototypes can be used to generate a categorization. In order to see this, 
assume that S is equipped with the Euclidean metric so that for every point p in the space 
one can measure the distance from p to each of the pi's. If we now stipulate that p belongs to 
the same category as the closest prototype pi, it can be shown that this rule will generate a 
partitioning of the space – the so-called Voronoi tessellation. An illustration of the Voronoi 
tessellation is given in figure 2. 

  

 

Figure 2. Voronoi tessellation of the plane into convex sets. 

 

A crucial property of the Voronoi partitioning of a conceptual space is that the Voronoi 
tessellation based on an Euclidean metric always results in a partitioning of the space into 
convex regions (see [38]). 

Thus, assuming that a Euclidean metric is defined on the subspace that is subject to 
categorization, a set of prototypes will by this method generate a unique partitioning of the 
subspace into convex regions. The upshot is that there is an intimate link between prototype 
theory and Criterion P. Furthermore, the metric is an obvious candidate for a measure of 
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similarity between different objects. In this way, the Voronoi tessellation provides a 
constructive geometric answer to how a similarity measure together with a set of prototypes 
determine a set of categories.  As will be seen in the following section, this way of 
generating categories can replace much of the work done on the Semantic Web by symbolic 
tools such as OWL. 

In the analysis of concepts presented here, I have tried to bring in elements from other 
theories in psychology and linguistics. The kind of representation proposed in Criterion C is 
on the surface similar to frames with slots for different features (sometimes called slots, 
attributes or roles, see for example [37]) that have been very popular within cognitive 
science as well as linguistics and computer science. My definition is richer since a 
representation based on conceptual spaces will allow me to talk about concepts being 
similar to each other and about objects being more or less central representatives of a 
concept. My model can be seen as combining frames with prototype theory, although the 
geometry of the domains will make possible inferences that cannot be made in either frame 
theory or prototype theory (see [7]).  

The main difference between the earlier theories and the conceptual spaces is that I put 
greater emphasis on the geometric structure of the concept representations. For example, 
features in frames are often represented in a symbolic form. As will be seen in sections 8 
and 9, the geometric structures are essential for the modelling of concept combinations. The 
main advantage of the geometric information is that it will make more inferences possible – 
inferences that are based on similarity, context information and correlations between 
dimensions. These kinds of inferences are difficult to model in a purely symbolic 
framework. 
The notion of a concept defined here has several similarities with the image schemas as 
studied in cognitive linguistics by Lakoff [22], Langacker [23] and others (see [10]). Even 
though their representations are often pictorial, they are, in general, not careful to specify 
the geometric structures of the domains that underlie the image schemas. Their account of 
image schemas does not generate machine-usable content, which is a necessary requirement 
for the Semantic Web. Holmqvist [20] has developed a computational-friendly 
representation that combines image schemas with some aspects of conceptual spaces. Many 
of his constructions could be applied also for the Semantic Web. 
 

 
7 Conceptual spaces as a tool for the Semantic Web 

 
Conceptual spaces can be seen as a representational level that serves as an anchoring 
mechanism between symbolic language and reality. Via representations of sensory 
dimensions, part of a conceptual space is tied to the “real world”. As explained in [11], 
other domains can then be added by metaphorical and higher level extensions. The 
connection between a conceptual space and a symbolic description is obtained by mapping 
name symbols onto points in the space and the concept (property and relation) symbols onto 
regions of the space (this will be explained further below). In this way the symbolic 
expression are anchored in a conceptual space, which in turn is partly “grounded” in reality.  

I now want to outline how the representational format of conceptual spaces can be 
exploited to generate the kind of semantic structures that are needed for a Semantic Web 
worthy of its name.  

The most important benefit of putting conceptual spaces as a representational level 
“below” the symbolic level is that the concept hierarchies (taxonomies) that are required 
for the symbolic structures can be generated almost for free from the conceptual spaces. The 
validity of “a robin is a bird” will emerge from the fact that the region of the conceptual 
space representing robins is a subregion of the one representing birds. In brief, if category 



 

prototypes and a metric domain are specified, a Voronoi tessellation can be computed that 
is sufficient to generate what is needed for an ontology in the sense specified above [37]. 

 Identities of concepts are also immediate, once the mapping between predicate 
symbols and regions is established. For example, “vixens are identical with female foxes” 
will follow from the fact that “vixens” and “female foxes” are represented by the same 
region of the conceptual space.  

Identities of names are handled in a similar way. Each name is mapped onto a point 
(vector) in the space. Hence, if two names (such as John Smith and John Q. Smith in 
Shirky’s example above) are mapped onto the same point, they are identical in meaning. 
Matters become more complicated if names are mapped onto partial vectors, where the 
values for some dimensions may be missing. However, I will not pursue this theme here.  

Property characteristics such as transitivity and symmetry also emerge from the 
representational format of the conceptual spaces. For example the fact that comparative 
relations like “earlier than” are transitive follows from the linear structure of the time 
dimension and is thus an intrinsic feature of this relation Similarly, it follows that 
everything that is green is coloured, since “green” refers to a region of the colour domain. 
Further, a property constraint such as that nothing is both red and green (all over) is 
immediate in the colour domain of the conceptual space, since these words refer to disjoint 
regions of the colour domain.  

These aspects of ontologies of the type currently used for the Semantic Web can be 
generated from the domain structures of the conceptual space. To put it bluntly, once the 
conceptual structure of an informational system has been specified, the semantic 
information that OWL and other meta-data languages are supposed to add becomes 
redundant. 

Another important aspect is that once this domain structure has been specified to allow 
representations of concept inclusion, property identity and name identity in the way outlined 
above, then there is no need for an inference engine on the symbolic level. The job of the 
symbolic reasoner is taken over by (non-symbolic) calculations on the conceptual level. As 
will be argued in section 10, these calculations are of a completely different nature 
compared to what is standard for symbolic inference engines. 

However, more than taxonomies of concepts can be used to generate inferences. The 
great strength of using conceptual spaces is that they can be utilised for representing many 
other aspects of semantics as well. In particular, the information about similarity that comes 
with the conceptual spaces can be used for various forms of approximate reasoning on the 
Semantic Web. For example, if I am searching on the Web for a particular wine that I want 
to buy and the wine is not available, then, with the aid of the similarity information 
provided by the domain structures of a conceptual space, I can ask for a wine that is similar 
to the one I am looking for. Since similarity is dependent on which dimensions are focused 
on, the system should ask me for what dimensions of the wine that are most important 
before it determines which wines are the most similar. If we stick to the symbolic 
representational format for the Semantic Web, this kind of reasoning about similarities is 
well nigh impossible (unless the dimensional structure I built into the symbolic 
representation – but this would be putting the cart before the horse). 

Another strong side of using conceptual spaces is that one obtains a much richer way of 
representing concept combinations. This will be the topic of next section. In [11], chapter 5, 
I also argue that metaphors and metonymies, to a large extent, can be understood using the 
conceptual framework. These are areas that are longstanding enigmas for the symbolic 
tradition. However, space does not allow me to develop these issues here. 

Of course, the proposed methodology for generating semantic content is not without 
problems. Since so much is delegated to the structure of the domains, the questions of how 
to identify and describe domains become central. Will we not end up with the same 



 

problems as for symbolic ontologies? How should one, for instance, handle the situation if 
there are competing domain descriptions in two web applications? The beginning of an 
answer is that there is in general more agreement on how to define a domain than how to 
define an ontology for the existing Semantic Web. Even if there are competing domains, 
their structure can be compared via their geometric and topological properties (just as is 
happening in metaphorical mappings). To give an analogy from the philosophy of science: 
if Newtonian physics and relativity theory are compared as axiomatic theories (in some 
suitable symbolic formulation), the theories will be incompatible (Kuhn even says 
incommensurable). Most physicists don’t care: if we view them as (dynamic) geometric 
structures, Newtonian mechanics will turn out to be just a limiting case of relativity theory. 

 
 

8 Concept combinations 

 
As was argued in section 2, the handling of concept combination is a central problem area 
for the Semantic Web, in particular for all kinds of query systems. Suppose that I am 
searching the Web for plants to my garden and in doing so I enter different combinations of 
words to my search engine. To just give one example, consider the use of “large” in 
combination like “large violet”, “large flower” and “large garden plant”. A large violet is 
not a large flower, let alone a large garden plant. Consequently, I would be disappointed if 
the search engine returned information about large violets, if I entered “large garden plant.” 
This simple example shows that giving an encompassing definition of “large” will not 
work.  

In the symbolic approach, combinations of concepts are traditionally expressed by 
conjunctions of predicates, modelled by intersections of classes. As was mentioned above, 
there are many everyday combinations of concepts that cannot be analyzed in this simplistic 
manner. Furthermore, as Hampton [17] points out, taking intersections leads to the 
prediction that if something is not a D, then it is not a D-which-is-a-C. But subjects tend to 
deny that a screwdriver is a weapon, but in general affirm that a screwdriver is a weapon-
which-is-a-tool. This kind of non-monotonicity is ubiquitous in concept combinations. 
Similarly, “white Zinfandel” is not a sub-category of “white wine” (it is a rosé wine) and 
“white wine” is not a sub-category of “white objects” (it is light yellow). 

In this section, I want to show that Criterion C has the potential to handle combinations 
of concepts. Suppose one wants to search the Web for the combination XY of two concepts 
X and Y, for example “large flowers” for my garden, where each concept is represented as a 
set of regions in a number of domains together with a prominence assignment to the 
domains according to the proposal in the previous section. Note that in the linguistic 
expressions for the combination, the order of X and Y is important: in English the word for 
X is taken to be a modifier of Y. Thus, red brick is a kind of brick, while brick red denotes 
a particular shade of red.  

The most common case of concept combination is when X is a property (normally 
expressed by an adjective) and Y is a concept (expressed by a noun). But there are also 
cases where both concepts are multi-domain concepts, normally expressed by nouns, for 
example, iron cast that can be contrasted with cast iron. Noun-noun combinations have 
been studied in some detail in, among others, [33, 34, 48]. 

As a first approximation, the general rule for the combination XY of two concepts X 
and Y that I propose is that the region for some domain of the modifier X replaces the 
corresponding region for Y. However, it will turn out to be necessary to account for further 
factors governing concept formation. Consequently, this rule will be amended below.  

Let us look at how the proposed rule applies to property-concept combinations. To give 
a paradigmatic example, green apple denotes the concept where the colour region of apple 



 

(which was illustrated as “red-yellow-green” in the frame above) is replaced by the more 
specific green region. In some cases, Y does not specify any value for the domain of X, in 
which case the X-region is simply added to the corresponding domain of Y. For example, 
the representation of book may not include any specified region of the colour domain, so in 
yellow book the yellow region of the colour domain is added to book. 

If the region of X is compatible with the corresponding region of Y, like in the two 
examples above, the result of combining X and Y can be described as the intersection of the 
concepts, as was proposed for the classical logical theory. However, if the regions are 
incompatible, as in pink elephant, the region for X overrules that of Y (which, in the case of 
elephant, presumably is the grey region of the colour domain). In such a case, X “revises” Y 
and XY cannot be described in terms of intersections. Such revisions will result in non-

monotonic effects of the contents of the concepts (see [9]). 
Even if the region for X is not strictly incompatible with the region of Y, modifying Y 

by X may still lead to revisions of Y because of the correlations between domains that are 
also part of the concept representation proposed in the previous section. For example, in 
brown apple, modifying the colour domain to the brown region may lead to a modification 
of the texture domain from smooth to shrivelled ([43], p. 523) since there is a strong 
correlation among apples between being brown and being shrivelled. Similarly, in wooden 

spoon, the size region of the spoon will be changed from small to large when the material of 
the spoon is specified as wood (Medin and Shoben 1988). 

In some cases, the regions of X may block some of the most prominent domains of Y, 
leading to rather drastic changes of the concept Y. For example in stone lion, the 
representation of stone includes the property “non-living” which is presumed by many of 
the domains of lion. These domains, like colour, sound, habitat, behaviour, etc., can thus 
not be assigned any region at all. By large, the only domain of lion that is compatible with 
stone is the shape domain. Consequently, the meaning of stone lion is an object made of 
stone that has the shape of a lion. 

Holland et al. ([19], chapter 4.2) present a computer program for concept formation 
called PI and give some examples of how the program handles concept combination. Even 
though the system is rule-based, and thus essentially a symbolic system, it uses a frame 
structure with different “slots” (domains). Since representations in PI are based on (default 
or absolute) rules, it is difficult to see how a geometric structure could be modelled. The 
program will also have problems in situations when the rules defining the concepts to be 
combined are in conflict with one another as in the stone lion example. However, an 
advantage of their approach is that the rule-generating mechanisms take into account 
expectations about the variability of concepts. This will be the topic of next section. 

 

9 The effect of contrast classes 

To further motivate the geometric approach to concept combination, I now turn to a kind of 
combinations that cannot be handled properly by the symbolic approach. The starting point 
is that, for some concepts, the meaning of the concept is often determined by the context in 
which it occurs. Since these phenomena are not accounted for by the general rule for 
concept combination that was proposed above, this rule must be amended. 

A typical example of context effects is that some properties cannot be defined 
independently of other properties. One simple example is the property of being tall. This 
property is connected to the height dimension, but cannot be identified with a region in this 
dimension. To see the difficulty, note that a chihuahua is a dog, but a tall chihuahua is not a 
tall dog. Thus “tall” cannot be identified with a set of tall objects. This property presumes 
some contrast class given by some other property, since things are not tall in themselves 



 

but only in relation to some given class of things. Tallness itself is determined with the aid 
of the height dimension. For a given contrast class Y, say the class of dogs, the region H(Y) 
of possible heights of the objects in Y can be determined. An object can then be said to be a 
tall Y if it belongs to the “upper” part of the region H(Y). Technically, the property “tall” 
can be defined as a class of regions: for each contrast class Y to which the height dimension 
is applicable, “tall” corresponds to the region of the height dimension which is the upper 
part of H(Y).  

The same mechanism can be applied to a number of other properties. It can sometimes 
result in rather odd effects. For example, the same stream of tap water (with a given 
temperature x) can be described as “hot” if seen as water in general, but as “cold” if seen as 
bath water. The reason is that in the first case the region to which “hot” is applied is the full 
range of water temperatures, while in the latter case it is only the limited interval of bath 
water temperatures (see figure 3). 

 

 

Figure 3. The meaning of “hot” in two different contrast classes. 

 

The effects of contrast classes also appear in many other situations. Consider the seemingly 
innocent concept red [15]. In the Advanced Learner's Dictionary of Current English, it is 
defined as “of the colour of fresh blood, rubies, human lips, the tongue, maple leaves in the 
autumn, post-office pillar boxes in Gt. Brit.” This definition fits very well with letting red 
correspond to the standard region of the colour space. Now consider red in the following 
combinations: 

 • Red book 
 • Red wine  
 • Red hair  
 • Red skin  
 • Red soil  
 • Redwood 
In the first example, red corresponds to the dictionary definition, and it can be 

combined with book in a straightforward extensional way that is expressed by a conjunction 
of predicates in first order logic (that is, intersecting the classes). In contrast, red would 
denote purple when predicated of wine, copper when used about hair, tawny when of skin, 
ochre when of soil and pinkish brown when of wood. How can we then explain that the 
same word is used in so many different contexts? 

I don't see how this phenomenon can be analysed in a uniform way using a frame-based 
model or any other symbolic model and I would challenge proponents of these theories to 
come up with a solution that would work for the Semantic Web. Here I want to show how 
the idea that a contrast class determines a domain can quite easily be given a general 
interpretation with the aid of conceptual spaces. For each contrast class, for example skin 
colour, one can map out the possible colours on the colour spindle. This mapping will 
determine a subset of the full colour space. Now, if the subset is completed to a space with 

the same geometry as the full colour space, one obtains a picture that looks like figure 4.  
In this smaller spindle, the colour words are then used in the same way as in the full 

space, even if the hues of the colour in the smaller space don't match the hues of the 
complete space. Thus, “white” is used about the lightest forms of skin, even though white 
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skin is pinkish, “black” refers to the darkest form of skin, even though black skin is brown, 
etc. Note that the set of possible skin colours will not cover the entire small spindle, but 

certain skin colour regions will be empty. There are for example no green people (but one 
can become green of envy or of sickness).   
 

Figure 4: The subspace of skin colours embedded in the full colour spindle. 

 
Given this way of handling contrast classes, I can now formulate a more precise version of 
the general rule for concept combination that was proposed above. The additional 
consideration is that the concept Y in the combination XY determines a contrast class. This 
contrast class may then modify the domains to which the concept X is applied as is 
illustrated in the examples above. The final proposal thus becomes:  

 

The combination XY of two concepts X and Y is determined by letting the regions for 

the domains of X, confined to the contrast class defined by Y, replace the corresponding 

regions for Y. 

 

 In the last two sections, I have presented a geometric model of concept combination based 
on conceptual spaces. I have not strived at developing the model in a full formalism, mainly 
because for most natural concepts it is very difficult, at this stage, to identify the relevant 
geometric structures of the domains. The model should rather be seen as setting up a 
programme for future analyses of concepts. Nevertheless, my ambition has been to show 
that the proposed model can handle some of the cases that have been problematic for 
symbolic models of concept combination. It should be obvious that any improvements 
along these lines have immediate consequences for the quality of the Semantic Web. My 
model reminds of frames, but it strongly exploits the geometric structure of concept 
representations. Among other things, this structure makes it possible to talk about relative 
distances between concepts and to account for the main features of prototype theory. 
 



 

10 Computational issues 

The change of representational format that I am proposing will also have consequences for 
the programming methods that should be employed. The symbolic approach to information 
representation is intimately connected with the classical view of computation. On this view, 
computations are defined by the Turing machine paradigm. If we look at the methods used 
in the “symbol crunching” of traditional AI, a clearly dominating feature of the algorithms 
is that they implement some form of rule following. The rules can be logical axioms as in 
an automated theorem prover, they can be syntactic rules as in a parsing program, a rule 
formulated in OWL, or they can be of a cognitively more general type as in the ACT* [1] 
and SOAR [36] architectures. Since the rules often are applied iteratively, methods for 
handling recursive procedures become central elements of computer programs within the 
symbolic tradition. As a matter of fact, a mainstream position in mathematical logic and 
(Chomskian) linguistics is that the proper theory of inference is nothing but recursion 
theory. 

When theories of theorem proving or sentence parsing are implemented in a computer, 
the program must be able to efficiently handle tree-like structures. This, in turn, entails that 
the computational methods require some smart heuristics for searching the tree structures. 
Consequently, using symbolic representations will lead to a focus on searching methods. 

Turning next to computations with conceptual spaces, their basic representational 
elements are points. Mathematically, points in dimensional spaces can be seen as vectors. 
Thus, calculations on the conceptual level to a large extent involve vector calculations, 
using matrix multiplications, inner products, etc. The geometric properties of the vectors 
confer their basic representational capacities. 

For example, the learning algorithms that are appropriate for representations on the 
conceptual level heavily exploit the vectorial representation. By using the distances 
provided in conceptual spaces, different numerical threshold criteria can be used in 
classification tasks (see, for example, Langley 1996, chapter 3, for a presentation of such 
criteria). In particular, linear and spherical threshold units have been studied. To classify an 
object using a linear threshold one multiplies the dimension values of the vector 
representing the object by the weights of the dimensions, sums the products, and checks 
whether the result exceeds the given threshold. This corresponds to using a (hyper-)plane in 
the conceptual space to classify the objects. The Voronoi rule is an example of such a linear 
threshold criterion. In a spherical threshold criterion all objects falling within a certain 
distance from a given point x are classified in the same category as x. This corresponds to 
using (hyper-)spheres in the space to sort the objects. Threshold criteria of these types 
obviously exploit the geometric structure of the conceptual space, particularly because they 
rely on distances. 

One methodological feature that clearly distinguishes the conceptual level from the 
symbolic is that similarity plays a central role on the conceptual level. Similarity between 
objects or properties will be represented by distances in spaces. Such a notion of a distance 
is difficult to model in a natural way in a symbolic system. In a connectionist system, 
distances may appear as an emergent feature, but is difficult to represent directly in an 
artificial neuron network (unless it is built in, as in Kohonen systems). 

Once distances between objects are represented, one can group objects according to the 
relative distances between them. In particular, clusters of objects are very useful when 
studying concept formation processes and generating taxonomies. Within the area of 
machine learning, there is a flourishing tradition concerning algorithms for identifying 
clusters (see, for example [21, 24, 32, 35]).  

 
 



 

11 Conclusion 

In this paper, my point of departure has been to identify some of the semantic limitations of 
the so-called Semantic Web. As a remedy, I have presented a research programme based on 
conceptual spaces. I have argued that by adopting this programme we obtain new tools to 
make the Semantic Web more semantic. In particular, information relating to similarity and 
the mechanisms of concept combination are important to increase the potency for inferences 
and query answering on the web. 

The programme I propose involves a radically shift in focus of what meta-data should 
be added to the web. In the current Semantic Web, the information mainly concerns 
taxonomies and inference rules. If conceptual spaces are used as a foundational 
methodology, the focus will be on describing domain structures. This involves, above all, 
specifying the geometric and topological structure of the domains. Describing domains will 
require a different programming methodology compared to what exists in OWL and similar 
languages. The second step is to give information about how the resulting space is 
partitioned into concepts. I have shown that by using prototypes and Voronoi tessellations, 
this can be done in a computationally efficient way.  

I have argued that once the relevant information about domain structure and prototypes 
becomes available, the taxonomies that have been in focus of the current Semantic Web 
will emerge from the domain structure and the symbolic inference mechanism will become 
more or less superfluous. The type of representing information suggested by conceptual 
spaces require computations involve vectors, using inferences based on similarities, rather 
than inference mechanisms based tree searching in a rule-based symbolic approach.  

The main factor preventing a rapid advancement of different applications of conceptual 
spaces is the lack of knowledge about the relevant quality dimensions. Only for a few 
domain do we have sufficient psychophysical evidence to say that we have identified the 
geometric structure of the domains. For many of the domains that will be used in 
applications of the Semantic Web, this kind of information will not be available, but the 
programmer must rely on other methods to obtain the required domain structure. Here tools 
like Multi-Dimensional Scaling or Principal Component Analysis will become useful. 

It is slightly discomforting to read that the philosopher John Locke already in 1690 
formulated the problem of describing the structure of our semantic knowledge in his Essay 

Concerning Human Understanding: “[M]en are far enough from having agreed on the 
precise number of simple ideas or qualities belonging to any sort of things, signified by its 
name. Nor is it a wonder; since it requires much time, pains, and skill, strict inquiry, and 
long examination to find out what, and how many, those simple ideas are, which are 
constantly and inseparably united in nature, and are always to be found together in the same 
subject.” ([25], book III, chapter VI, 30) Even though our knowledge has advanced a bit 
since then, we still face the same problems in the construction of the Semantic Web. 
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