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In this paper we describe the implementation of an autonomous agent for live 
coding—the practice of creating art in real-time by writing computer code. The 
TidalCycles language (an extension of the strongly typed functional program-
ming language Haskell) is used for the generation of new musical patterns. 
This is integrated as part of a system which allows automatic suggestion of 
the agent’s patterns to a live coder. We aim for this to be a co-creative system, 
using machine agents to explore not-yet conceptualised code sequences and 
support coders in asking new questions.
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1. Introduction

This paper investigates the autonomous generation of musical pattern through 
the practice of live coding—a term used to refer to performers creating art by 
writing computer code, usually in front of an audience (Collins et al. 2003). In 
live coding, computer language is the primary medium for notation and describ-
ing the rules with which to synthesise artworks, in this case we consider the case 
where the output is musical pattern. The practice of live coding places a strong 
focus on liveness, embracing error, indeterminism and clear mappings between 
syntax and output. It constructs a paradigm for musical interaction and forms 
the basis with which we explore creating an autonomous agent.     

1.1. Musical Pattern in TidalCycles 

For this system of autonomously generated live coded music, the Tidal-
Cycles language is used (commonly denoted as Tidal). Tidal is a real-time, 
domain-specific language (embedded in the strongly typed functional program-
ming language Haskell) used for pattern construction. The Tidal language itself 
does not produce any audio, rather it produces patterns of Open Sound Control 
(OSC) messages. These are most commonly sent to a sampler and synthesizer 
engine in the SuperCollider software, which handles the audio synthesis and 
rendering. However, it is also applicable to other types of pattern, and has 
indeed been used to pattern live choreographic scores (Sicchio 2014), woven 
textiles (McLean 2018), lighting, and VJing. Here is a trivial example of a pattern 
in the TidalCycles language:

d1 $ fast 2 $ sound “bd sn”

In the above, ‘d1’ stands for a connection between Haskell and SuperCollider. 
The ‘sound’ function specifies outgoing OSC messages and the double quotes 
denote a pattern of samples to be played using Tidal’s ‘mini-notation’, in this 
case a bass drum followed by a snare drum sample, played in a loop or cycle. 
The Tidal-specific function ‘fast’ speeds up the pattern by the given factor, in 
this case the pattern would be played two times per cycle.  The dollar opera-
tor is inherited from Haskell, giving function application with low precedence, 
therefore passing the ‘sound’ pattern as the second argument of ‘fast’. The 
live-coder evaluates this in their text editor of choice, causing the pattern they 
have constructed to begin to play, which it does until they decide to edit and 
re-evaluate the pattern, causing a change in the music on-the-fly. 
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Tidal was chosen as the target for our creative agent for two main reasons 
(other than the authors’ familiarity). Firstly, although known as a popular live 
coding environment for human musicians, it originally stemmed from a repre-
sentation for machine learning and generation, through a project modelling 
rhythmic continuations based on Kurt Schwitters’ sound poem “Ursonate” 
(McLean 2007), and so is designed to be straightforward to parse and manip-
ulate for computers as well as humans. Secondly, in typical models of musi-
cal generation, representation of musical structure is usually limited, due 
to the tendency of these models to use low-level symbolic representations, 
most often in MIDI format. Although MIDI allows a certain level of expres-
sive completeness in its representation, many generation algorithms reduce 
these to impoverished note representations of pitch number and velocity, 
thus losing nuance around timbre, expression and structure. We want a richer 
representation of music in the generation process for greater depth of musi-
cal expression and more learning opportunities for our machine counterparts.  
 
An extensive framework for the description and evaluation of music representa-
tion systems suitable for implementation on computers is provided in (Wiggins 
et al. 1993). Coding languages are a particularly strong way to do this, due to 
their relation to natural language. Although natural language and program-
ming languages are ontologically distinct, programming languages provide a 
means for human expression due to the way that syntax can be used to convey 
musical meaning. Coding presents the musician with the ideal set of tools and 
performance context for algorithms to be written in the form of instructions 
(Magnusson 2011).

1.2. Motivation 

Many musical generation systems posited as artificially intelligent are often 
trained on corpuses of musical pieces in which the outcome has already been 
predetermined. The training corpus provided is usually a set of works by a 
composer or composers of a certain era or musical genre. Music where some 
of the elements of the composition are left to chance is often known as alea-
toric, stochastic or indeterminate music. Examples include John Cage’s Music 
of Changes to determine music structural elements by chance, using methods 
derived from the I Ching, or procedures of graphic notation scores, used in 
the works of André Boucourechliev and Sylvano Bussotti, in which drawings, 
images, or other non-musical symbols are used to suggest musical ideas to the 
performers (Brown 1986). Indeterministic music is an under-explored area in 
the field of musical artificial intelligence, mostly due to the inherent challenges 
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posed by training on a corpus that is not fixed. Live coding provides a conceptual 
framework for this work to exist, as randomness is often encoded inherently in 
its structure. This is true of algorithmic music in general, although live coding 
adds an additional level of indeterminacy, as the notation is designed to be 
changed while it is followed. 

Another of the main motivations in creating this autonomous agent is to provide 
a way of generating musical ideas that have not previously been conceptual-
ised by human live coders. Perhaps this can be used as a way to combat forms 
of what Wiggins (2006b) describes as ‘uninspiration’ by traversing across (and 
beyond) a search space for novel ideas. Here Wiggins builds on the pseudo-for-
mal definition of creativity provided by Boden as “the generation of novel and 
valuable ideas” (Boden 2004, 3). We can see how a co-creative system might 
arise under this definition of creativity, where the machine agent can generate 
novel patterns whilst the human live coder can determine the value of these 
novel ideas. Starting from this point it is clear how to form an interaction loop, 
where the live-coder generates patterns and a machine agent can also develop 
a sense of value for these. 

Perhaps surprisingly, as practising live coding musicians ourselves, we find that 
listening to code can be a more important part of live coding than writing it in 
the first place. In other words if code is a map and music is the territory, then 
the code can only be read and understood when you listen to the territory that 
it generates. This is true also of the person who is writing the code, who has 
the experience of editing the code, hearing the result, and only then being able 
to fully understand their edit and decide what to change next in response. By 
writing and editing code, the live coder may be making imperative statements 
(stating how they want music to be made) or declarative statements (stating 
what music they want to be made) but they are doing so in order to ask ques-
tions - which aren’t about how or what, but what if? From this perspective, our 
project aims to support live coders in asking new questions.

Beyond the practical implementation of such a new interface, we hope this system 
can augment our understanding of how humans and machines can improvise 
together. The abstraction of human creativity into computer systems is useful for 
developing an understanding of how co-creativity with a machine musician aids in 
the development of methodologies for human-machine improvisation strategies 
(Wilson et al. 2020). The motivation for creation of this system is to understand 
more about co-creativity rather than solely machine creativity using search-based 
techniques and looking at knowledge-based systems exploring conceptual spaces. 
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Whilst individualistic self-expression is essential to any composer, it should be 
acknowledged that composition itself does not occur in a vacuum, but rather 
emerges from community traditions, practices and styles. Likewise, the ethos 
of live coding is built around community and knowledge-sharing and in turn, the 
music a live coder makes is interdependent on the communities they exist in. 
Integrating an autonomous agent serves as an expansion of creative and collab-
orative practice and thus is hoped to better the live coding community as a result.  

Moving further into the territory of autonomous generation of musical pattern, 
it is important to take stock of the ethical implications of such a system. Music 
generation systems face ethical minefields around issues of authorship, licens-
ing, data-privacy and inherited societal biases reflected in the music produced. 
We want to acknowledge that these are potential issues for our system but defer 
addressing these questions currently, focusing instead on discussion of how 
our system was developed for its aim of creating musical patterns with code. 

2. Background 

2.1. Autonomous Agents in Live Coding 

Autonomous generation of music has been well explored in recent computer 
music history, spanning from the first attempt at generating scores, often cited 
as Hiller’s Illiac Suite (Hiller 1957) for the Illiac I computer, through to the deep 
learning works of Google’s Magenta project (Huang et al. 2018) and entries to 
the AI song contest (Huang et al. 2020). Of particular interest is the work of 
George Lewis in creating Voyager (Lewis 2000) — an interactive improvisational 
system with a machine counterpart. Lewis’s work was particularly influential as 
it acknowledged music was more than just data about note relationships but 
rather music was a product of community and he attempted to encode these 
aesthetic values into his work. Lewis’s work was also particularly relevant as 
it saw automation as an opportunity for augmentation of the creative process 
and these ideas align strongly with our motivations. 

Given the prolific climate for artificial intelligence and live coding’s ground-
ing in human-computer interaction, it is unsurprising that the challenge of 
co-creation with machine musicians has already been attempted. Co-creation 
collaborative configurations (human-machine, machine-machine) in various 
contexts are explored in (Xambo 2017), identifying potential synergies and 
novel insights of co-creativity applied to collaborative music live coding. Nota-
ble examples that generate Tidal code include an autonomous performer, Cibo, 
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which tokenises Tidal code and uses a sequence-to-sequence neural network 
trained on a corpus of Tidal performances to generate novel patterns (Stewart 
and Lawson 2019) or using a defined-grammar and evolutionary algorithms to 
evolve patterns, using the collaborative live-coding platform Extramuros (Hick-
inbotham and Stepney 2016). 

2.2. Creative Systems 

To contextualise this work, we look to some definitions of creative systems. 
Margaret Boden, a prominent figure in the philosophy of computationally 
creative systems, defines the notion of a “conceptual space” as a set of artefacts 
which, in some quasi-syntactic sense, are deemed to be acceptable examples 
of whatever is being created. From Boden’s definition of creativity (2004) arises 
the ideas of exploratory creativity (the process of exploring a given conceptual 
space) and transformational creativity (the process of changing the rules which 
delimit the conceptual space). A formalism of creative systems, the Creative 
Systems Framework, provided by Wiggins (2006a), defines an exploratory 
creative system (such as the one here presented) in mathematical represen-
tation. This formalism can also be expanded to transformationally creative 
systems, by considering transformational creativity as exploratory creative on 
the meta-level. Considering creativity as a search through conceptual space 
there are clear similarities between this and traditional AI search techniques 
(Wiggins 2006b). Particularly the notion of a state space (i.e. the space of partial 
or complete solutions to a particular algorithm) is closely related to Boden’s 
idea of a conceptual space. Many strategies used by humans in creative prac-
tice closely resemble algorithms too, artists often use generate and test strat-
egies (Buchanan 2000).  

The creative system framework has been applied to create conceptual spaces 
for possible creative agents in Tidal in (Wiggins and Forth 2018) and a discus-
sion is offered on where creative responsibility in live coding can be shared 
with a computer. When sharing creative responsibility with a machine agent 
in Tidal, Wiggins and Forth advocate for three key components. The first is the 
ability of a computer to relate the meaning of a program to its syntax. Secondly, 
the computer should have some model for the coder’s aesthetic preferences. 
Finally, the system should have the ability to manipulate the available constructs 
to take some creative responsibility for the music. This work focuses mainly on 
the latter aspect of this proposition.
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3. Creative Search

 
The search strategy for generating the Tidal agent’s outcomes combined a 
random walk process with Haskell’s type system. The possible states for the 
walker are the various type signatures of functions. The aim was to create a 
walker agent that could navigate through the conceptual space of all possible 
syntactically valid Tidal code. Weightings for this walk process were supplied 
by an n-gram model: a contiguous sequence of n-functions generated from a 
corpus of existing Tidal patterns. From this model, potentially infinite strings 

Fig. 1. Flow of the different 
components of the algorithm 
needed to produce code 
sequences, from generating 
the model from the data to 
creating syntactically correct 
code by type-checking.
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of code can be generated, providing the search space for the creative agent. 
However, derived rules and constraints are necessary components of the model 
to produce useful, executable code. The overall flow from the tokenisation of the 
corpus, through to creative search and generating code can be seen in Figure 1.

3.1. The Tidal ‘Universe’- the Types

Being embedded in the Haskell language means TidalCycles inherits Haskell’s 
system of static, pure types. The type of every expression is known at compile 
time, leading to safer code. Haskell has type inference which means types 
don’t have to be explicitly specified where they can be inferred by the compiler. 
Nonetheless in Haskell all functions and other values have an underlying “type 
signature”, defining the types of pure inputs and outputs. Tidal’s representation 
of musical pattern applies the principles of Functional Reactive Programming 
(FRP), so rather than representing music as data structures, it instead represents 
it as behaviour—as functions of time. 

Tidal’s representation of pattern in the Haskell type system has profound 
impacts on the functionality of the language. For example, instead of repre-
senting a sequence as a list of events, it represents sequences as a function, 
taking a timespan (or rather, a time arc, as time is treated as cyclic) as input, 
and then returning all the active events during that timespan (McLean 2020). 
These types are defined as instances of standard Haskell type-classes, includ-
ing functors, applicative functors and monads. As a result, Tidal patterns are 
highly composable, at different levels of abstraction. By composable, we first 
mean in the computer scientific sense — that as functions, patterns can be 
flexibly composed together into new patterns, but also in the musical sense, in 
that complex musical behaviour can be composed together from simple parts.

This type system forms the basis with which our autonomous agent can 
construct new patterns of code. The implementation of this occurs as follows. 
We start with a dictionary of available functions/values in Tidal, each with a 
representation of its type signature and the number of times it should occur 
within any Tidal pattern. An initial target is specified as a pattern of synthesiser 
control messages as this is the standard output from any Tidal pattern. The 
walker starts by randomly choosing any function that could produce a pattern 
of the type of the target. Based on the system’s implicit weightings and rules, 
which are outlined in the following sections, the algorithm recurses through the 
possible functions and chooses a function that can fit with the next pattern in 
the sequence, where the possible permutations of functions that fit together are 
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also explicitly defined.  Figure 2 shows the implementation of this. Finally, the 
recursion ends once the target sequence has been fulfilled. The code generated 
in the instance of Figure 2 would be:

d1 $ jux (rev) $ sound “bd sn” 

 
In this example, the target is ‘Pattern Control Map’ (a pattern of synthesiser 
control messages) and the walker randomly chooses the function ‘jux’ as a 
starting point. This is a function with two arguments, the first argument is a func-
tion to apply to the pattern given as its second argument, but it does so only in 
the right-hand audio channel, giving a stereo juxtaposition where one channel 
is transformed and the other is not. The result of ‘jux’ is a new pattern, but in 
order to arrive at this we must provide the functions inputs. The walker therefore 
recurses, calling itself with the type of each argument. This recursion allows 
for one of the arguments to itself be a function that requires further arguments, 
although that is not the case with this simple example. Note that while ‘rev’ is 
a function, in this case it is treated as a value to pass to ‘jux’; in other words, 

‘jux’ is a higher-order function. The walker continues to recurse and produces a 
sequence, until it meets the target type signature, where the process terminates.

3.2. Reducing the Search Space

The walker can generate code that is syntactically correct and therefore execut-
able. However, the demands of live coding as a musical practice mean code 
should be kept concise enough to create a pattern that is both able to be 
processed by the audio engine without excessive latency, and also with brevity 
required for both the musician and audience to have some understanding of its 
relation to the musical output. It was therefore necessary to reduce the options 
in the search space to those which resembled code a human live coder might 
produce, although arguably, machine generated code does not have to directly 
resemble a human’s output: human coders have learnt coding behaviours (style, 

Fig. 2. A directed acyclic graph 
to illustrate the construction of 
the simple pattern - jux (rev) 
$ sound “bd sn” - where the 
highlighted nodes are the 
functions chosen by the algo-
rithm at each recursive step. 
The arrows represent the pos-
sible transition probabilities to 
any other possible states.
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function choice, sample choice) whereas machine generated code is stylisti-
cally agnostic and this agnosticism could prove beneficial for creative ideation. 

The generation method has similarities with evolutionary computing’s ideas of 
search and optimisation, and accordingly techniques were borrowed from this 
field, particularly for reduction of the code. The first search reduction technique 
incorporated into the algorithm was bloat, i.e. where there was an increase 
in mean program size without improvements in fitness and where the output 
generated grows excessively due to redundant operations (Luke et al. 2006). 
For this pattern generation algorithm, function selection was limited to those 
functions that had not been seen previously. In practice, this reduces bloat by 
ensuring two functions that have the same action can not be applied in succes-
sion, preventing excessive growth. For example, in the TidalCycles language, the 

‘rev’ function will play a pattern in its reverse order, however applying this twice 
is equivalent to not applying at all and thus adds bloat to the pattern generation. 

Further pruning was applied to the search, similar to those seen in search-based 
algorithms (Garcia et al. 2006). Another of the goals in pruning was removing 
idempotent functions, i.e. with set E and function composition operator °, idem-
potent elements are the functions  f : E → E such that f  °  f = f, in other words 
such that      x  E, f(f(x))=f(x). This was removed by the algorithm in the case where 
the function ‘every 1’ was applied to another function. This is analogous to the 
function itself being applied and was thus removed. 

3.3. Navigating the Search Space

To navigate a creative search space it was important to be able to steer this 
walk. To achieve this, weights were applied to all of the possible functions that 
could occur next in the sequence, corresponding to their respective transition 
probabilities. A corpus of code patterns created from TidalCycles users was 
provided as the source for the weightings. The code patterns were used as 
the source for an algorithm written to tokenise the functions and convert them 
into an n-gram model. This provided a data structure which, when picking any 
function at random, can provide the next function to be picked based on its 
weighted likelihood. 

These weights were not static and the weights would redistribute throughout the 
pattern generation process to ensure excessive and impractical (or potentially 
infinite) code was not generated. The possible values for the next function in the 
sequence were chosen using a squared reciprocal factor as the arity (how many 

A
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arguments the function takes) and depth (how many functions have already 
been chosen prior) parameters increased. A user-controlled environment vari-
able was included in this reweighting factor modifying the overall decay rate of 
these weights, allowing control over the rate at which the weights decayed to 
zero and thus the length of sequence generated. 

Finally, the walker finishes navigating once it arrives at an expression that meets 
the target type signature. There are fairly rare cases where it reaches a dead-
end - applying functions to functions until it finds a type signature which is not 
possible to meet with the functions and values available to the walker. Currently 
if this happens the walker gives up, although in the future we intend to investi-
gate a back-tracking procedure. 

3.4. Evaluating Patterns 

The current state of the algorithm has no particular faculties for evaluation of its 
own output, other than the listener’s perception. Evaluation is a crucial part of 
any system that claims computational creativity, yet this is often done with the 
researcher’s subjective claims of creative behaviour (Agres et al. 2016). Human 
evaluation may still be the best way to judge whether a produced piece sounds 
aesthetically pleasing, however there are drawbacks to this method. Requiring 
human participants to rate the algorithm’s output over multiple iterations of 
generated code could take an excessive amount of time for the listener. Further-
more participant fatigue is a commonly noted, yet often ignored, problem with 
listening tests (Schatz 2012) affecting the reliability of the results.

Additionally, human evaluation might never reach an empirical consensus on 
what is aesthetically pleasing due to the vast differences in listener preferences. 
If our goal is simulating some form of artificially intelligent musical behaviours, 
then the capability of a system to reflect on its productions should be an import-
ant functionality of a computationally creative system.

4. Challenges in Code Generation

One of the challenges in creating our autonomous agent was steering throughout 
the space in a logical way, similar to how a live-coder might produce a coherent 
musical pattern in Tidal. The first iterations of code generated by the algorithm 
were often found going down unsolvable or infinite paths. We found weightings 
from the n-gram model worked well to keep the code produced reasonable, by 
contextualising code generation in what is likely to happen. 
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Another of the main problems encountered with this system was with the 
mini-notation within the Tidal language. This is a terse way to represent events 
within a pattern in Tidal syntax. The mini-notation in TidalCycles is based on 
the Bol Processor (Bel 2001). Within the mini-notation, polyrhythms, polyme-
ter, repetition, and rhythmic subgrouping can all be described as part of the 
string passed to the sound function. These additional complexities of notation 
were omitted in this early version, where mini-notation strings are treated as 
single tokens. Future work will incorporate generation of mini-notation strings 
into the process.

5. Outcomes

The overall system as it can be used in performance is seen in Figure 3. This 
includes building a custom Haskell listener module to request a pattern when a 
command from the Atom Editor is executed. The listener module, on receiving 
an OSC message from the Atom editor, then requests a pattern from the walker 
module. This is then sent back to the listener, parsed into JSON format and 
then sent to the Atom editor, where the pattern is displayed as a suggestion to 
the user. This can then be evaluated by the human live coder, which sends the 
pattern to the SuperCollider sound synthesis engine, rendering the pattern into 
the acoustic domain for the live coder to listen to, evaluate and then continue 
to edit their performance.

 

Fig. 3. The overall structure 
of the system as used in 
performance.
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5.1. Auto-suggestion of Patterns in the Atom Editor

An autocomplete package was written for the Atom text editor software, where 
Tidal code is usually evaluated, so that the agent could suggest code patterns in 
real-time. The autocomplete package requests code sequence options from the 
autonomous agent. These options are returned, displayed to the user in a typical 
format of a dropdown menu of options to select. Three potential use-cases were 
thought of during the development using the code generation as a suggestion 
engine: education, collaborator, and auto-performer.

Fig. 4. The Atom Text Editor 
Package auto-suggesting 
a syntactically valid code 
sequence, which would pro-
duce a musical pattern when 
evaluated.
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In the education context, the autonomous agent can be called upon to supply 
someone learning TidalCycles with possible code sequences. The student would 
be able to see and then select valid code sequences. This helps reduce the 
learning curve by having small examples at-the-ready, overcoming blank-slate 
situations of not knowing what to type, and to reinforce learning by doing. The 
live-coder is allowed control over the length of sequences generated, allowing 
those using in the learning context to generate manageable pattern suggestions. 
These suggestions can deepen their knowledge of how the language is used. 

For the experienced TidalCycles user, the autonomous agent could be a creative 
collaborator. In the process of creating new live-coded audio, a user may look 
to the autonomous agent for inspiration or something completely random that 
the user may not have thought of. In a sense, consider this as a creative bump 
or push. Additionally, as a thought experiment, the user may employ the auton-
omous agent as an antagonistic collaborator. This antagonistic collaborator may 
insert short sequences of code that the user must work with or work around - 
not unlike setting up a Surrealist’s game. 

In the last example of the auto-performer, additional system structure can be 
added to facilitate the autonomous agent to become a performer for either 
solo or ensemble member contexts. While similar in outcome to other machine 
agent performers, the methods of code sequence generation are unique and 
may lead to new sound producing practices and ideas within live performance.

5.2. Pattern Production

Although this system is still in the early stages of development, its results have 
been promising with its capabilities to produce syntactically correct and execut-
able code. Sequences where weighting was decaying faster produced results 
like that below, similar to the trivial short phrases a live-coder might write.  

fast 2 $ jux (rev) $ sound “bd sn”
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With an optimal decay rate, patterns that produced some interesting (and some-
times unpredictable) behaviours were produced:

(#) ((#) (chop ((+) 1 “3 4 5”) $ vowel $ fast (rev 1) “a e i o u”) $ speed 
2) $ slow (rev $ fast “3 4 5” 1) $(#) (shape $ rev $ fast 2 1) $ slow 2 
$ slow 2 $ sound $ every (rev 1) rev “bd sn”

chop (fast “3 4 5” $ (+) (fast 2 $ rev 1) 2) $ slow “3 4 5” $ fast “3 4 
5” $ (#) (sound “bd sn”) $ shape 1

(#) ((#) (rev $ fast 1 $ speed 2) $ shape $ every  (rev $ run $ every 
(slow 2 1) (every 2 rev) 1) rev 2) $ sound “bd sn”

The former creates a combination between Tidal’s granular synthesis func-
tion ‘chop’ and vowel formant resonances effects ‘vowel’, producing a staccato 
vocaloid pattern. The second pattern takes the same chop function, but alter-
nates the size with which to chop the samples up by, creating a delay effect. The 
latter creates a pattern out of the shape effect (a form of amplification) on the 
bass drum and snare drum sample. It does this to such an extent that it produces 
a pitched sound, by pushing the clipping towards a square wave. 

Some more examples of sonic patterns produced by the autonomous live-cod-
ing agent can be found at https://soundcloud.com/tidal-bot-main. 

Live performances using patterns from the autonomous coding agent can be 
found at https://www.youtube.com/channel/UCEkXT_natfoK8Kwy3z5hLRw  

6. Future Work

The models for generating patterns could be extended in future work as follows. 
Firstly, although the system has the capability to generate and make use of 
n-grams, these were restricted to bigrams as a proof-of-concept.  When gener-
ating the transition probabilities to the next possible functions, the agent only 
has contextual awareness of one function ahead in the sequence. Whilst this 
works to some extent, given that some functions in Tidal often are composed 
of two or more parameters, the agent is not aware of wider context. Extension 
to tri-grams or n-gram models for any n ϵ N* is possible and should be included 
in future implementations.  

https://soundcloud.com/tidal-bot-main
https://www.youtube.com/channel/UCEkXT_natfoK8Kwy3z5hLRw
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Currently the user interaction with the system is limited to only controlling 
the length of sequences produced. Future versions of this project could look 
further into the role of the human in such a system, looking for any particular 
tradeoffs that might occur between how much control is given to the human 
over the computer. In the Conductive system (Bell 2013) (a Haskell live coding 
environment), “players” are introduced as a means with which the human can 
interact, where the programmer is in control of semi-autonomous agents. The 
autocomplete package is designed to act as a similar mechanism to the players 
in the Conductive system, where the live coder can retain control over the agents 
suggestions and ultimately view this as a creative partnership.

For true two-way creative partnership to occur, additional evaluation of the 
success of the system is required. Moreover, for it to be considered as a compu-
tationally creative system some capacity for self-reflection is needed, arguably 
this a necessary facet of a truly creative system (Agres et al. 2016). As it stands 
we are not making any assertions on its capacity for creativity, rather are inves-
tigating how it can be used as part of a creative process. 

Finally, the live in live coding suggests that future iterations of this work would 
benefit from live performance and evaluation of these performances. This 
would allow the audience to participate in the evaluation by offering feedback 
and reflections on both the system’s outputs and the creative processes that 
produce them.

7. Conclusion

The work here presents an autonomous agent for live coding in the TidalCy-
cles language. This agent can produce syntactically correct code by piecing 
together functions from a random walk process. Using Haskell meant that the 
type system could easily be leveraged to ensure sequences fit together in a 
way that would produce syntactically correct code. The agent is provided as a 
proof-of-concept and we have discussed various future extensions to this work. 
Most importantly, we emphasise the role of automation as an opportunity for 
augmentation of the creative process. 
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