
76

Elizabeth Wilson
elizabeth.wilson@qmul.ac.uk
Queen Mary University,
London, UK

Shawn Lawson
shawn.a.lawson@asu.edu
Arizona State University,
Tempe, USA

Alex McLean
alex@slab.org
Research Institute for the
History of Science and
Technology, Deutsches
Museum, Munich, DE

Jeremy Stewart
jeremy.ste@gmail.com
Rensselaer Polytechnic
Institute, Troy, NY, USA

xCoAx 2021 9th Conference on
Computation, Communication, Aesthetics & X

2021.xCoAx.org

Autonomous Creation of Musical
Pattern from Types and Models
in Live Coding

Keywords: Live Coding, Musical Artificial Intelligence, Computational Creativity, Algorithmic

Pattern, Human-Computer Interaction

In this paper we describe the implementation of an autonomous agent for live
coding—the practice of creating art in real-time by writing computer code. The
TidalCycles language (an extension of the strongly typed functional program-
ming language Haskell) is used for the generation of new musical patterns.
This is integrated as part of a system which allows automatic suggestion of
the agent’s patterns to a live coder. We aim for this to be a co-creative system,
using machine agents to explore not-yet conceptualised code sequences and
support coders in asking new questions.

77

1. Introduction

This paper investigates the autonomous generation of musical pattern through
the practice of live coding—a term used to refer to performers creating art by
writing computer code, usually in front of an audience (Collins et al. 2003). In
live coding, computer language is the primary medium for notation and describ-
ing the rules with which to synthesise artworks, in this case we consider the case
where the output is musical pattern. The practice of live coding places a strong
focus on liveness, embracing error, indeterminism and clear mappings between
syntax and output. It constructs a paradigm for musical interaction and forms
the basis with which we explore creating an autonomous agent.

1.1. Musical Pattern in TidalCycles

For this system of autonomously generated live coded music, the Tidal-
Cycles language is used (commonly denoted as Tidal). Tidal is a real-time,
domain-specific language (embedded in the strongly typed functional program-
ming language Haskell) used for pattern construction. The Tidal language itself
does not produce any audio, rather it produces patterns of Open Sound Control
(OSC) messages. These are most commonly sent to a sampler and synthesizer
engine in the SuperCollider software, which handles the audio synthesis and
rendering. However, it is also applicable to other types of pattern, and has
indeed been used to pattern live choreographic scores (Sicchio 2014), woven
textiles (McLean 2018), lighting, and VJing. Here is a trivial example of a pattern
in the TidalCycles language:

d1 $ fast 2 $ sound “bd sn”

In the above, ‘d1’ stands for a connection between Haskell and SuperCollider.
The ‘sound’ function specifies outgoing OSC messages and the double quotes
denote a pattern of samples to be played using Tidal’s ‘mini-notation’, in this
case a bass drum followed by a snare drum sample, played in a loop or cycle.
The Tidal-specific function ‘fast’ speeds up the pattern by the given factor, in
this case the pattern would be played two times per cycle. The dollar opera-
tor is inherited from Haskell, giving function application with low precedence,
therefore passing the ‘sound’ pattern as the second argument of ‘fast’. The
live-coder evaluates this in their text editor of choice, causing the pattern they
have constructed to begin to play, which it does until they decide to edit and
re-evaluate the pattern, causing a change in the music on-the-fly.

78

Tidal was chosen as the target for our creative agent for two main reasons
(other than the authors’ familiarity). Firstly, although known as a popular live
coding environment for human musicians, it originally stemmed from a repre-
sentation for machine learning and generation, through a project modelling
rhythmic continuations based on Kurt Schwitters’ sound poem “Ursonate”
(McLean 2007), and so is designed to be straightforward to parse and manip-
ulate for computers as well as humans. Secondly, in typical models of musi-
cal generation, representation of musical structure is usually limited, due
to the tendency of these models to use low-level symbolic representations,
most often in MIDI format. Although MIDI allows a certain level of expres-
sive completeness in its representation, many generation algorithms reduce
these to impoverished note representations of pitch number and velocity,
thus losing nuance around timbre, expression and structure. We want a richer
representation of music in the generation process for greater depth of musi-
cal expression and more learning opportunities for our machine counterparts.

An extensive framework for the description and evaluation of music representa-
tion systems suitable for implementation on computers is provided in (Wiggins
et al. 1993). Coding languages are a particularly strong way to do this, due to
their relation to natural language. Although natural language and program-
ming languages are ontologically distinct, programming languages provide a
means for human expression due to the way that syntax can be used to convey
musical meaning. Coding presents the musician with the ideal set of tools and
performance context for algorithms to be written in the form of instructions
(Magnusson 2011).

1.2. Motivation

Many musical generation systems posited as artificially intelligent are often
trained on corpuses of musical pieces in which the outcome has already been
predetermined. The training corpus provided is usually a set of works by a
composer or composers of a certain era or musical genre. Music where some
of the elements of the composition are left to chance is often known as alea-
toric, stochastic or indeterminate music. Examples include John Cage’s Music
of Changes to determine music structural elements by chance, using methods
derived from the I Ching, or procedures of graphic notation scores, used in
the works of André Boucourechliev and Sylvano Bussotti, in which drawings,
images, or other non-musical symbols are used to suggest musical ideas to the
performers (Brown 1986). Indeterministic music is an under-explored area in
the field of musical artificial intelligence, mostly due to the inherent challenges

79

posed by training on a corpus that is not fixed. Live coding provides a conceptual
framework for this work to exist, as randomness is often encoded inherently in
its structure. This is true of algorithmic music in general, although live coding
adds an additional level of indeterminacy, as the notation is designed to be
changed while it is followed.

Another of the main motivations in creating this autonomous agent is to provide
a way of generating musical ideas that have not previously been conceptual-
ised by human live coders. Perhaps this can be used as a way to combat forms
of what Wiggins (2006b) describes as ‘uninspiration’ by traversing across (and
beyond) a search space for novel ideas. Here Wiggins builds on the pseudo-for-
mal definition of creativity provided by Boden as “the generation of novel and
valuable ideas” (Boden 2004, 3). We can see how a co-creative system might
arise under this definition of creativity, where the machine agent can generate
novel patterns whilst the human live coder can determine the value of these
novel ideas. Starting from this point it is clear how to form an interaction loop,
where the live-coder generates patterns and a machine agent can also develop
a sense of value for these.

Perhaps surprisingly, as practising live coding musicians ourselves, we find that
listening to code can be a more important part of live coding than writing it in
the first place. In other words if code is a map and music is the territory, then
the code can only be read and understood when you listen to the territory that
it generates. This is true also of the person who is writing the code, who has
the experience of editing the code, hearing the result, and only then being able
to fully understand their edit and decide what to change next in response. By
writing and editing code, the live coder may be making imperative statements
(stating how they want music to be made) or declarative statements (stating
what music they want to be made) but they are doing so in order to ask ques-
tions - which aren’t about how or what, but what if? From this perspective, our
project aims to support live coders in asking new questions.

Beyond the practical implementation of such a new interface, we hope this system
can augment our understanding of how humans and machines can improvise
together. The abstraction of human creativity into computer systems is useful for
developing an understanding of how co-creativity with a machine musician aids in
the development of methodologies for human-machine improvisation strategies
(Wilson et al. 2020). The motivation for creation of this system is to understand
more about co-creativity rather than solely machine creativity using search-based
techniques and looking at knowledge-based systems exploring conceptual spaces.

80

Whilst individualistic self-expression is essential to any composer, it should be
acknowledged that composition itself does not occur in a vacuum, but rather
emerges from community traditions, practices and styles. Likewise, the ethos
of live coding is built around community and knowledge-sharing and in turn, the
music a live coder makes is interdependent on the communities they exist in.
Integrating an autonomous agent serves as an expansion of creative and collab-
orative practice and thus is hoped to better the live coding community as a result.

Moving further into the territory of autonomous generation of musical pattern,
it is important to take stock of the ethical implications of such a system. Music
generation systems face ethical minefields around issues of authorship, licens-
ing, data-privacy and inherited societal biases reflected in the music produced.
We want to acknowledge that these are potential issues for our system but defer
addressing these questions currently, focusing instead on discussion of how
our system was developed for its aim of creating musical patterns with code.

2. Background

2.1. Autonomous Agents in Live Coding

Autonomous generation of music has been well explored in recent computer
music history, spanning from the first attempt at generating scores, often cited
as Hiller’s Illiac Suite (Hiller 1957) for the Illiac I computer, through to the deep
learning works of Google’s Magenta project (Huang et al. 2018) and entries to
the AI song contest (Huang et al. 2020). Of particular interest is the work of
George Lewis in creating Voyager (Lewis 2000) — an interactive improvisational
system with a machine counterpart. Lewis’s work was particularly influential as
it acknowledged music was more than just data about note relationships but
rather music was a product of community and he attempted to encode these
aesthetic values into his work. Lewis’s work was also particularly relevant as
it saw automation as an opportunity for augmentation of the creative process
and these ideas align strongly with our motivations.

Given the prolific climate for artificial intelligence and live coding’s ground-
ing in human-computer interaction, it is unsurprising that the challenge of
co-creation with machine musicians has already been attempted. Co-creation
collaborative configurations (human-machine, machine-machine) in various
contexts are explored in (Xambo 2017), identifying potential synergies and
novel insights of co-creativity applied to collaborative music live coding. Nota-
ble examples that generate Tidal code include an autonomous performer, Cibo,

81

which tokenises Tidal code and uses a sequence-to-sequence neural network
trained on a corpus of Tidal performances to generate novel patterns (Stewart
and Lawson 2019) or using a defined-grammar and evolutionary algorithms to
evolve patterns, using the collaborative live-coding platform Extramuros (Hick-
inbotham and Stepney 2016).

2.2. Creative Systems

To contextualise this work, we look to some definitions of creative systems.
Margaret Boden, a prominent figure in the philosophy of computationally
creative systems, defines the notion of a “conceptual space” as a set of artefacts
which, in some quasi-syntactic sense, are deemed to be acceptable examples
of whatever is being created. From Boden’s definition of creativity (2004) arises
the ideas of exploratory creativity (the process of exploring a given conceptual
space) and transformational creativity (the process of changing the rules which
delimit the conceptual space). A formalism of creative systems, the Creative
Systems Framework, provided by Wiggins (2006a), defines an exploratory
creative system (such as the one here presented) in mathematical represen-
tation. This formalism can also be expanded to transformationally creative
systems, by considering transformational creativity as exploratory creative on
the meta-level. Considering creativity as a search through conceptual space
there are clear similarities between this and traditional AI search techniques
(Wiggins 2006b). Particularly the notion of a state space (i.e. the space of partial
or complete solutions to a particular algorithm) is closely related to Boden’s
idea of a conceptual space. Many strategies used by humans in creative prac-
tice closely resemble algorithms too, artists often use generate and test strat-
egies (Buchanan 2000).

The creative system framework has been applied to create conceptual spaces
for possible creative agents in Tidal in (Wiggins and Forth 2018) and a discus-
sion is offered on where creative responsibility in live coding can be shared
with a computer. When sharing creative responsibility with a machine agent
in Tidal, Wiggins and Forth advocate for three key components. The first is the
ability of a computer to relate the meaning of a program to its syntax. Secondly,
the computer should have some model for the coder’s aesthetic preferences.
Finally, the system should have the ability to manipulate the available constructs
to take some creative responsibility for the music. This work focuses mainly on
the latter aspect of this proposition.

82

3. Creative Search

The search strategy for generating the Tidal agent’s outcomes combined a
random walk process with Haskell’s type system. The possible states for the
walker are the various type signatures of functions. The aim was to create a
walker agent that could navigate through the conceptual space of all possible
syntactically valid Tidal code. Weightings for this walk process were supplied
by an n-gram model: a contiguous sequence of n-functions generated from a
corpus of existing Tidal patterns. From this model, potentially infinite strings

Fig. 1. Flow of the different
components of the algorithm
needed to produce code
sequences, from generating
the model from the data to
creating syntactically correct
code by type-checking.

83

of code can be generated, providing the search space for the creative agent.
However, derived rules and constraints are necessary components of the model
to produce useful, executable code. The overall flow from the tokenisation of the
corpus, through to creative search and generating code can be seen in Figure 1.

3.1. The Tidal ‘Universe’- the Types

Being embedded in the Haskell language means TidalCycles inherits Haskell’s
system of static, pure types. The type of every expression is known at compile
time, leading to safer code. Haskell has type inference which means types
don’t have to be explicitly specified where they can be inferred by the compiler.
Nonetheless in Haskell all functions and other values have an underlying “type
signature”, defining the types of pure inputs and outputs. Tidal’s representation
of musical pattern applies the principles of Functional Reactive Programming
(FRP), so rather than representing music as data structures, it instead represents
it as behaviour—as functions of time.

Tidal’s representation of pattern in the Haskell type system has profound
impacts on the functionality of the language. For example, instead of repre-
senting a sequence as a list of events, it represents sequences as a function,
taking a timespan (or rather, a time arc, as time is treated as cyclic) as input,
and then returning all the active events during that timespan (McLean 2020).
These types are defined as instances of standard Haskell type-classes, includ-
ing functors, applicative functors and monads. As a result, Tidal patterns are
highly composable, at different levels of abstraction. By composable, we first
mean in the computer scientific sense — that as functions, patterns can be
flexibly composed together into new patterns, but also in the musical sense, in
that complex musical behaviour can be composed together from simple parts.

This type system forms the basis with which our autonomous agent can
construct new patterns of code. The implementation of this occurs as follows.
We start with a dictionary of available functions/values in Tidal, each with a
representation of its type signature and the number of times it should occur
within any Tidal pattern. An initial target is specified as a pattern of synthesiser
control messages as this is the standard output from any Tidal pattern. The
walker starts by randomly choosing any function that could produce a pattern
of the type of the target. Based on the system’s implicit weightings and rules,
which are outlined in the following sections, the algorithm recurses through the
possible functions and chooses a function that can fit with the next pattern in
the sequence, where the possible permutations of functions that fit together are

84

also explicitly defined. Figure 2 shows the implementation of this. Finally, the
recursion ends once the target sequence has been fulfilled. The code generated
in the instance of Figure 2 would be:

d1 $ jux (rev) $ sound “bd sn”

In this example, the target is ‘Pattern Control Map’ (a pattern of synthesiser
control messages) and the walker randomly chooses the function ‘jux’ as a
starting point. This is a function with two arguments, the first argument is a func-
tion to apply to the pattern given as its second argument, but it does so only in
the right-hand audio channel, giving a stereo juxtaposition where one channel
is transformed and the other is not. The result of ‘jux’ is a new pattern, but in
order to arrive at this we must provide the functions inputs. The walker therefore
recurses, calling itself with the type of each argument. This recursion allows
for one of the arguments to itself be a function that requires further arguments,
although that is not the case with this simple example. Note that while ‘rev’ is
a function, in this case it is treated as a value to pass to ‘jux’; in other words,

‘jux’ is a higher-order function. The walker continues to recurse and produces a
sequence, until it meets the target type signature, where the process terminates.

3.2. Reducing the Search Space

The walker can generate code that is syntactically correct and therefore execut-
able. However, the demands of live coding as a musical practice mean code
should be kept concise enough to create a pattern that is both able to be
processed by the audio engine without excessive latency, and also with brevity
required for both the musician and audience to have some understanding of its
relation to the musical output. It was therefore necessary to reduce the options
in the search space to those which resembled code a human live coder might
produce, although arguably, machine generated code does not have to directly
resemble a human’s output: human coders have learnt coding behaviours (style,

Fig. 2. A directed acyclic graph
to illustrate the construction of
the simple pattern - jux (rev)
$ sound “bd sn” - where the
highlighted nodes are the
functions chosen by the algo-
rithm at each recursive step.
The arrows represent the pos-
sible transition probabilities to
any other possible states.

85

function choice, sample choice) whereas machine generated code is stylisti-
cally agnostic and this agnosticism could prove beneficial for creative ideation.

The generation method has similarities with evolutionary computing’s ideas of
search and optimisation, and accordingly techniques were borrowed from this
field, particularly for reduction of the code. The first search reduction technique
incorporated into the algorithm was bloat, i.e. where there was an increase
in mean program size without improvements in fitness and where the output
generated grows excessively due to redundant operations (Luke et al. 2006).
For this pattern generation algorithm, function selection was limited to those
functions that had not been seen previously. In practice, this reduces bloat by
ensuring two functions that have the same action can not be applied in succes-
sion, preventing excessive growth. For example, in the TidalCycles language, the

‘rev’ function will play a pattern in its reverse order, however applying this twice
is equivalent to not applying at all and thus adds bloat to the pattern generation.

Further pruning was applied to the search, similar to those seen in search-based
algorithms (Garcia et al. 2006). Another of the goals in pruning was removing
idempotent functions, i.e. with set E and function composition operator °, idem-
potent elements are the functions f : E → E such that f ° f = f, in other words
such that x E, f(f(x))=f(x). This was removed by the algorithm in the case where
the function ‘every 1’ was applied to another function. This is analogous to the
function itself being applied and was thus removed.

3.3. Navigating the Search Space

To navigate a creative search space it was important to be able to steer this
walk. To achieve this, weights were applied to all of the possible functions that
could occur next in the sequence, corresponding to their respective transition
probabilities. A corpus of code patterns created from TidalCycles users was
provided as the source for the weightings. The code patterns were used as
the source for an algorithm written to tokenise the functions and convert them
into an n-gram model. This provided a data structure which, when picking any
function at random, can provide the next function to be picked based on its
weighted likelihood.

These weights were not static and the weights would redistribute throughout the
pattern generation process to ensure excessive and impractical (or potentially
infinite) code was not generated. The possible values for the next function in the
sequence were chosen using a squared reciprocal factor as the arity (how many

A

86

arguments the function takes) and depth (how many functions have already
been chosen prior) parameters increased. A user-controlled environment vari-
able was included in this reweighting factor modifying the overall decay rate of
these weights, allowing control over the rate at which the weights decayed to
zero and thus the length of sequence generated.

Finally, the walker finishes navigating once it arrives at an expression that meets
the target type signature. There are fairly rare cases where it reaches a dead-
end - applying functions to functions until it finds a type signature which is not
possible to meet with the functions and values available to the walker. Currently
if this happens the walker gives up, although in the future we intend to investi-
gate a back-tracking procedure.

3.4. Evaluating Patterns

The current state of the algorithm has no particular faculties for evaluation of its
own output, other than the listener’s perception. Evaluation is a crucial part of
any system that claims computational creativity, yet this is often done with the
researcher’s subjective claims of creative behaviour (Agres et al. 2016). Human
evaluation may still be the best way to judge whether a produced piece sounds
aesthetically pleasing, however there are drawbacks to this method. Requiring
human participants to rate the algorithm’s output over multiple iterations of
generated code could take an excessive amount of time for the listener. Further-
more participant fatigue is a commonly noted, yet often ignored, problem with
listening tests (Schatz 2012) affecting the reliability of the results.

Additionally, human evaluation might never reach an empirical consensus on
what is aesthetically pleasing due to the vast differences in listener preferences.
If our goal is simulating some form of artificially intelligent musical behaviours,
then the capability of a system to reflect on its productions should be an import-
ant functionality of a computationally creative system.

4. Challenges in Code Generation

One of the challenges in creating our autonomous agent was steering throughout
the space in a logical way, similar to how a live-coder might produce a coherent
musical pattern in Tidal. The first iterations of code generated by the algorithm
were often found going down unsolvable or infinite paths. We found weightings
from the n-gram model worked well to keep the code produced reasonable, by
contextualising code generation in what is likely to happen.

87

Another of the main problems encountered with this system was with the
mini-notation within the Tidal language. This is a terse way to represent events
within a pattern in Tidal syntax. The mini-notation in TidalCycles is based on
the Bol Processor (Bel 2001). Within the mini-notation, polyrhythms, polyme-
ter, repetition, and rhythmic subgrouping can all be described as part of the
string passed to the sound function. These additional complexities of notation
were omitted in this early version, where mini-notation strings are treated as
single tokens. Future work will incorporate generation of mini-notation strings
into the process.

5. Outcomes

The overall system as it can be used in performance is seen in Figure 3. This
includes building a custom Haskell listener module to request a pattern when a
command from the Atom Editor is executed. The listener module, on receiving
an OSC message from the Atom editor, then requests a pattern from the walker
module. This is then sent back to the listener, parsed into JSON format and
then sent to the Atom editor, where the pattern is displayed as a suggestion to
the user. This can then be evaluated by the human live coder, which sends the
pattern to the SuperCollider sound synthesis engine, rendering the pattern into
the acoustic domain for the live coder to listen to, evaluate and then continue
to edit their performance.

Fig. 3. The overall structure
of the system as used in
performance.

88

5.1. Auto-suggestion of Patterns in the Atom Editor

An autocomplete package was written for the Atom text editor software, where
Tidal code is usually evaluated, so that the agent could suggest code patterns in
real-time. The autocomplete package requests code sequence options from the
autonomous agent. These options are returned, displayed to the user in a typical
format of a dropdown menu of options to select. Three potential use-cases were
thought of during the development using the code generation as a suggestion
engine: education, collaborator, and auto-performer.

Fig. 4. The Atom Text Editor
Package auto-suggesting
a syntactically valid code
sequence, which would pro-
duce a musical pattern when
evaluated.

89

In the education context, the autonomous agent can be called upon to supply
someone learning TidalCycles with possible code sequences. The student would
be able to see and then select valid code sequences. This helps reduce the
learning curve by having small examples at-the-ready, overcoming blank-slate
situations of not knowing what to type, and to reinforce learning by doing. The
live-coder is allowed control over the length of sequences generated, allowing
those using in the learning context to generate manageable pattern suggestions.
These suggestions can deepen their knowledge of how the language is used.

For the experienced TidalCycles user, the autonomous agent could be a creative
collaborator. In the process of creating new live-coded audio, a user may look
to the autonomous agent for inspiration or something completely random that
the user may not have thought of. In a sense, consider this as a creative bump
or push. Additionally, as a thought experiment, the user may employ the auton-
omous agent as an antagonistic collaborator. This antagonistic collaborator may
insert short sequences of code that the user must work with or work around -
not unlike setting up a Surrealist’s game.

In the last example of the auto-performer, additional system structure can be
added to facilitate the autonomous agent to become a performer for either
solo or ensemble member contexts. While similar in outcome to other machine
agent performers, the methods of code sequence generation are unique and
may lead to new sound producing practices and ideas within live performance.

5.2. Pattern Production

Although this system is still in the early stages of development, its results have
been promising with its capabilities to produce syntactically correct and execut-
able code. Sequences where weighting was decaying faster produced results
like that below, similar to the trivial short phrases a live-coder might write.

fast 2 $ jux (rev) $ sound “bd sn”

90

With an optimal decay rate, patterns that produced some interesting (and some-
times unpredictable) behaviours were produced:

(#) ((#) (chop ((+) 1 “3 4 5”) $ vowel $ fast (rev 1) “a e i o u”) $ speed
2) $ slow (rev $ fast “3 4 5” 1) $(#) (shape $ rev $ fast 2 1) $ slow 2
$ slow 2 $ sound $ every (rev 1) rev “bd sn”

chop (fast “3 4 5” $ (+) (fast 2 $ rev 1) 2) $ slow “3 4 5” $ fast “3 4
5” $ (#) (sound “bd sn”) $ shape 1

(#) ((#) (rev $ fast 1 $ speed 2) $ shape $ every (rev $ run $ every
(slow 2 1) (every 2 rev) 1) rev 2) $ sound “bd sn”

The former creates a combination between Tidal’s granular synthesis func-
tion ‘chop’ and vowel formant resonances effects ‘vowel’, producing a staccato
vocaloid pattern. The second pattern takes the same chop function, but alter-
nates the size with which to chop the samples up by, creating a delay effect. The
latter creates a pattern out of the shape effect (a form of amplification) on the
bass drum and snare drum sample. It does this to such an extent that it produces
a pitched sound, by pushing the clipping towards a square wave.

Some more examples of sonic patterns produced by the autonomous live-cod-
ing agent can be found at https://soundcloud.com/tidal-bot-main.

Live performances using patterns from the autonomous coding agent can be
found at https://www.youtube.com/channel/UCEkXT_natfoK8Kwy3z5hLRw

6. Future Work

The models for generating patterns could be extended in future work as follows.
Firstly, although the system has the capability to generate and make use of
n-grams, these were restricted to bigrams as a proof-of-concept. When gener-
ating the transition probabilities to the next possible functions, the agent only
has contextual awareness of one function ahead in the sequence. Whilst this
works to some extent, given that some functions in Tidal often are composed
of two or more parameters, the agent is not aware of wider context. Extension
to tri-grams or n-gram models for any n ϵ N* is possible and should be included
in future implementations.

https://soundcloud.com/tidal-bot-main
https://www.youtube.com/channel/UCEkXT_natfoK8Kwy3z5hLRw

91

Currently the user interaction with the system is limited to only controlling
the length of sequences produced. Future versions of this project could look
further into the role of the human in such a system, looking for any particular
tradeoffs that might occur between how much control is given to the human
over the computer. In the Conductive system (Bell 2013) (a Haskell live coding
environment), “players” are introduced as a means with which the human can
interact, where the programmer is in control of semi-autonomous agents. The
autocomplete package is designed to act as a similar mechanism to the players
in the Conductive system, where the live coder can retain control over the agents
suggestions and ultimately view this as a creative partnership.

For true two-way creative partnership to occur, additional evaluation of the
success of the system is required. Moreover, for it to be considered as a compu-
tationally creative system some capacity for self-reflection is needed, arguably
this a necessary facet of a truly creative system (Agres et al. 2016). As it stands
we are not making any assertions on its capacity for creativity, rather are inves-
tigating how it can be used as part of a creative process.

Finally, the live in live coding suggests that future iterations of this work would
benefit from live performance and evaluation of these performances. This
would allow the audience to participate in the evaluation by offering feedback
and reflections on both the system’s outputs and the creative processes that
produce them.

7. Conclusion

The work here presents an autonomous agent for live coding in the TidalCy-
cles language. This agent can produce syntactically correct code by piecing
together functions from a random walk process. Using Haskell meant that the
type system could easily be leveraged to ensure sequences fit together in a
way that would produce syntactically correct code. The agent is provided as a
proof-of-concept and we have discussed various future extensions to this work.
Most importantly, we emphasise the role of automation as an opportunity for
augmentation of the creative process.

92

Acknowledgements. McLean’s contribution to this work is as part of the
PENELOPE project, with funding from the European Research Council (ERC)
under the Horizon 2020 research and innovation programme of the European
Union, grant agreement no. 682711. Wilson’s contributions were supported
by EPSRC and AHRC under the EP/L01632X/1 (Centre for Doctoral Training in
Media and Arts Technology) grant and the Summer of Haskell programme, part
of the Google Summer of Code.

References

Agres, Kat, Jamie Forth,
and Geraint A. Wiggins.
2016. “Evaluation of musical
creativity and musical
metacreation systems”. In
Computers in Entertainment
(CIE) 14(3), 1–33.

Bel, Bernard.
2001. Rationalizing musical
time: syntactic and symbol-
ic-numeric approaches

Bell, Renick.
2013. “An approach to live
algorithmic composition using
conductive”. In: Proceedings of
LAC. vol. 2013

Boden, Margaret A.
2004. The creative mind: Myths
and mechanisms. London:
Weidenfeld and Nicolson.

Brown, Earle.
1986. “The notation and
performance of new music.”
The Musical Quarterly 72, no. 2
(1986): 180-201.

Buchanan, Bruce G.
2000. “Creativity at the
Meta-level,” AI Magazine.
Reprint of keynote lecture to
AAAI-2000.

Collins, Nick,
Alex McLean,
Julian Rohrhuber,
and Adrian Ward.
2003. “Live coding in laptop
performance”. In: Organised
sound 8(3), 321–330.

Garcia-Almanza, Alma Lilia,
and Edward PK, Tsang.
2006. “Simplifying decision
trees learned by genetic
programming”. In: 2006 IEEE
International Conference on
Evolutionary Computation. pp.
2142–2148.

Hickinbotham,
Simon, Susan Stepney.
2016. “Augmenting live coding
with evolved patterns”. In:
International Conference on
Computational Intelligence in
Music, Sound, Art and Design.
pp. 31–46. Springer.

Hiller, Lejaren,
Jack McKenzie,
and Helen Hamm.
1957. Illiac suite.

Huang, Cheng-Zhi Anna,
Hendrik Vincent Koops,
Ed Newton-Rex, Monica Din-
culescu, and Carrie J. Cai.
2020. “AI Song Contest:
Human-AI Co-Creation in
Songwriting.” arXiv preprint
arXiv:2010.05388.

Huang, Cheng-Zhi Anna, Ash-
ish Vaswani, Jakob Uszkoreit,
Ian Simon, Curtis Hawthorne,
Noam Shazeer, Andrew M
Dai, Matthew D Hoffman,
Monica Dinculescu, and
Douglas Eck. 2018. “Music
transformer: Generating music
with long-term structure”. In
International Conference on
Learning Representations.

Lewis, George E.
2000. “Too many notes: Com-
puters, complexity and culture
in voyager”. In: Leonardo Music
Journal. pp.33–39.

93

Luke, Sean, and Liviu Panait.
2006. “A comparison of bloat
control methods for genetic
programming”. In: Evolution-
ary Computation 14, no.3:
309–344.

Magnusson, Thor.
2011. “Algorithms as scores:
Coding live music.” Leonardo
Music Journal (2011): 19-23.

McLean, Alex,
and E., Harlizius-Kluck.
2018. “Fabricating algorithmic
art”. In Austrian Cultural
Forum.

McLean, Alex.
2007. “Improvising with syn-
thesised vocables, with anal-
ysis towards computational
creativity.” PhD diss., Master’s
thesis, Goldsmiths College,
University of London.

McLean, Alex.
2020. “Algorithmic pattern”.
In NIME.

Schatz, Raimund, Sebastian
Egger, and Kathrin Masuch.
2012. “The impact of test
duration on user fatigue and
reliability of subjective quality
ratings.” Journal of the Audio
Engineering Society 60, no. 1/2
: 63-73.

Sicchio, Kate.
2014.“ Data management
part iii: An artistic framework
for understanding technol-
ogy without technology”. In:
Media-N: Journal of the New
Media Caucus 3(10).

Stewart, Jeremy,
Shawn Lawson.
2019. “Cibo: An autonomous
tidalcycles performer”. In:
International Conference on
Live Coding.

Wiggins, Geraint, Eduardo
Miranda, Alan Smaill,
and Mitch Harris.
1993. “A framework for the
evaluation of music represen-
tation systems”. In: Computer
Music Journal 17, no.3. pp
31–42.

Wiggins, Geraint A.
2006a. “A preliminary
framework for description,
analysis and comparison of
creative systems”. In: Knowl-
edge-Based Systems 19, no.7.
pp 449–458.

Wiggins, Geraint A.
2006b. “Searching for com-
putational creativity”. New
Generation Computing 24, no.3
(2006): 209–222.

Wiggins, Geraint A,
and Jamie, Forth.
2018. “Computational Cre-
ativity and Live Algorithms” In:
Alex McLean and Roger Dean,
eds. The Oxford Handbook of
Algorithmic Music. Oxford, UK:
Oxford University Press.

Wilson, Elizabeth, György
Fazekas, Geraint Wiggins.
2020. “Collaborative human
and machine creative
interaction driven through af-
fective response in live coding
systems.” In: International
Conference on Live Interfaces
(2020)

Xambó, Anna, Gerard Roma,
Pratik Shah, Jason Freeman,
and Brian Magerko.
2017. “Computational Chal-
lenges of Co-Creation in Col-
laborative Music Live Coding:
An Outline.” In Proceedings
of the 2017 Co-Creation
Workshop at the International
Conference on Computational
Creativity.

