TidalVortex Zero

Alex McLean
Then Try This
alex@slab.org

Sylvain Le Beux
LANDR Audio
artheist@gmail.com

ABSTRACT

In this paper we introduce ‘version zero’ of TidalVortex,
an alternative implementation of the TidalCycles live
coding system, using the Python programming language.
This is open-ended work, exploring what happens when
we try to extract the 'essence’ of a system like TidalCycles
and translate it into another programming language,
while taking advantage of the affordance of its new host.

First, we review the substantial prior art in porting
TidalCycles, and in representing musical patterns in
Python. We then compare equivalent patterns written in
Haskell (TidalCycles) and Python (TidalVortex), and
relate implementation details of how functional reactive
paradigms have translated from the pure functional,
strongly typed Haskell to the more multi-paradigm,
dynamically typed Python. Finally, we conclude with
reflections and generalisable outcomes.

1. INTRODUCTION

TidalCycles is a live coding environment developed
since 2009 [1], for improvising music with algorithmic
patterns [2]. It is a domain specific language (DSL)
embedded in Haskell, a pure functional programming
language. It makes use of Haskell’s type system to
represent patterns as functions of time, based on pure
functional reactive programming (FRP) techniques [3],
extended to unify continuous signals and discrete
sequences within a single representation of patterns. That
is, in TidalCycles, patterns are not stored as data
structures, but as functional behaviour.

Part of what makes TidalCycles expressive is the ability
to flexibly compose patterns together into new
behaviours, thanks to Haskell’s foundational support for
applicative functors and monads. Explaining these
type-level structures is outside the scope of this paper, so
instead we explain what they do in TidalCycles. The
applicative functor definition for patterns means that a
live coder can, for example, add together two patterns of
numbers to create a new pattern, even if the patterns have
complex structures that are very different from one
another. Similarly, the pattern monad definition supports
the ability for pattern manipulations to themselves be
patterned, for example by patterning the factor by which

Raphaél Forment
Université Jean Monnet (UIM)
raphael. forment@gmail.com

Damian Silvani
University of Buenos Aires (UBA)
munshkr@gmail.com

another pattern is being speeded up or down. The result is
a terse language that even groups of eight year olds are
able to grasp sufficiently to make and perform music
together within an hour [4]. So while these type-level
concepts have a reputation for being difficult to
understand, we argue that any difficulty is not exposed to
the TidalCycles end-user programmer.

It is not only applicative functors and monads which
TidalCycles depends on for its expressive pattern DSL.
Haskell’s type inference, partial application, string
overloading, and parsec parser combinator library [5] are
all made extensive use of in creating a language that is
terse and expressive enough to support fast-paced,
from-scratch live coding.' This leads to the question
explored in this paper - what happens when you try to
extract the ‘essence’ of TidalCycles, and translate it into
another programming language?

2. FROM HASKELL TO PYTHON

To answer the above question, we re-implemented the
TidalCycles pattern representation in Python, a
multi-paradigm programming language in widespread use
including across industry, scientific and creative contexts.
At the time of writing, the port to Python is around one
month old, and is codenamed TidalVortex. Thanks to a
team of collaborators (the present authors) it is already
usable, with a custom editor, using the SuperDirt engine*
created by Julian Rohrhuber for TidalCycles, and with
networked time synchrony using the Link protocol [5].

Before outlining the challenges of creating Tidal Vortex,
we will first review related Python live coding systems.

2.1 Prior art in Python live coding systems

Existing Python-based live-coding environments
include FoxDot’ by Ryan Kirkbride, Bespoke* by Ryan
Challinor and Isobar’ by Daniel Jones. These are each
unique, highly capable systems, built on different
foundations and designed with particular aims. FoxDot

' For full details on the TidalCycles syntax and

functionality, see https://tidalcycles.org

2 https://github.com/musikinformatik/SuperDirt
3 https:/foxdot.org

* https://www.bespokesynth.com

> hitp://ideoforms.github.io/isobar/

cites some influence from TidalCycles for its notation,
but is based on an object-oriented paradigm, privileging
stateful interaction between musical voices [6]. Bespoke
integrates live coding within an expansive, visual
patcher-style audio environment, where the end-user live
coder is given free reign to define their own musical
constructs within a callback-based system. Isobar and
TidalCycles emerged at the same time and from the same
lab (the Intelligent Sound and Music Systems group in
Goldsmiths, University of London), and Isobar offers an
extensive library of functions for composing and
manipulating patterns. However again the underlying
representations differ, with Isobar closely influenced by
SuperCollider’s own pattern DSL [7], supporting stateful
operations on sequences rather than functions of time.
Without getting too deeply into the design trade-offs at
play, the pure FRP approach of TidalCycles results in
patterns which are very easy to compose, combine and
transform, but due to the lack of state, have relatively
poor support for some ‘classic’ algorithmic composition
techniques such as L-systems, cellular automata and
Markov chains. There’s no particular reason why Tidal
(-Cycles or -Vortex) couldn’t become multi-paradigm and
better support these techniques, but in any case, readers
interested in them are encouraged to take a look at Isobar.

2.2 Prior art in porting Tidal features outside
Haskell

Several non-Haskell projects have already focused on
porting some TidalCycles features for integration into
existing live coding environments. However these
projects have not tended to port Tidal's internal pattern
representation. Rather, they have focussed on the
TidalCycles mini-notation for sequences, which is itself
inspired by Bernard Bel's Bol Processor [8]. Examples of
projects mapping the mini-notation to their own
representations include the JavaScript-based tidal.pegjs
project® implemented for Gibber [9], and Bacalao’ for
SuperCollider. David Ogborn's Estuary platform and its
built-in MiniTidal language deserves special mention
[10]. This project allows multiple users to use a large
subset of TidalCycles referred to as "MiniTidal" from a
web browser. Strictly speaking, this is not a port, behind
the scenes it runs the entirety of TidalCycles via the ghcjs
Haskell-to-Javascript compiler, with a custom parser.

TidalVortex Zero differs from these examples in porting
the 'innards' of TidalCycles, by re-implementing its core
FRP approach in Python.

2.3 Challenges of porting code from Haskell to
Python

On the face of it, Haskell and Python are very different
languages. Haskell is pure functional and strictly typed,
offering a conceptual environment which can feel
inflexible and unforgiving, but which therefore demands

® https://github.com/gibber-cc/tidal.pegjs
" https://github.com/totalgee/bacalao

clear thinking and very well-defined representations. By
contrast, Python is ‘multi-paradigm’ in terms of
supporting object-oriented, functional and procedural
approaches to structuring a program. Functional is quite
an ambiguous term, but in this case means that Python
allows functions to be treated as values, and therefore
passed to and returned from other functions. Unlike
Haskell, it is not however pure functional, so there is no
guarantee that a function will not, for example, change
the state of the program in an unpredictable way.
Relatedly, Python does not support features like inbuilt
memoisation or tail-recursion optimisation, which
Haskell programmers routinely rely upon when making
efficient programs in a functional style. Nonetheless,
Python does in general have well developed support for
functional programming constructs, including the
lambda call for constructing anonymous functions, list
comprehensions and maps, and its functools library for
e.g. supporting partial application®.

Our feeling then is that it would have been difficult to
create something close to TidalCycles in Python in the
first place. The conceptual development of its
representation of pattern required deep thinking, with
clarifying moments heavily supported by Haskell’s type
system. However with the work done in developing
TidalCycles in Haskell, we have found that to a large
extent it is possible to translate it to Python.

24 What parts of TidalCycles have made it to
TidalVortex?

The TidalVortex port from Haskell to Python was
primarily based not on the current TidalCycles codebase,
but on an ongoing experimental rewrite of it [12]. The
core representation of this rewrite aims to be functionally
identical to mainline TidalCycles, but has been
refactored, and is therefore easier to translate.

TidalCycles really consists of two languages, one
embedded in the other. The embedded language is known
as its mini-notation, for quickly describing sequences,
including syntax for defining subsequences, polymeters,
polyrhythms, random selection and so on. Mini-notation
sequences are denoted with double-quotes but are not
otherwise treated as strings — they are immediately
parsed into patterns, i.e. functions of time, for further
manipulation and combination with other patterns. This is
done with the extensive combinator library that forms the
core of TidalCycles, and allows the end-user live coder to
make complex wholes from simple parts. So we can say
that TidalCycles consists of a library of pattern functions
for transforming and combining patterns, with a
mini-notation embedded into it as a quick way of
expressing sequences into patterns.

The mini-notation is really a short-hand, and although
the vast majority of TidalCycles users make heavy use of
it, it is not essential, and so far we have not prioritised

8 To explore further, see the dedicated page:
https://docs.python.org/3/howto/functional.html

implementing it in Tidal Vortex. This is because the lack
of a mini-notation allows positive design focus on
making the base DSL as expressive as possible.

As well as the lack of mini-notation, a large portion of
the TidalCycles library of functions are not yet
implemented. Focus has instead been on the low-level
representation of patterns, and the end-user live coding
interface in terms of how patterns are manipulated and
combined.

3. COMPARING PATTERNS

In this section we will share examples of equivalent
patterns written in Tidal Vortex and TidalCycles. These
are not intended to demonstrate the full range of
possibilities in either, or showcase them as musical
interfaces. Rather, we aim only to compare and contrast
their practicalities, in order to informally evaluate the
success of the TidalVortex port so far. To help avoid
confusion between them, we show TidalCycles examples
with a grey background, before equivalent Tidal Vortex
examples in white. We refer to properties common to
both TidalCycles and Tidal Vortex implementations
simply as 7idal. Some basic familiarity of TidalCycles
will help understand what follows, so please refer to the
documentation for a primer if you are new to all this.’

As we mentioned earlier, TidalVortex does not have a
mini-notation, so is therefore more verbose'%:

|sound "bd ~ [sd cp]"

|sound("bd", silence, ["sd", "cp"])

The first example in TidalCycles (and therefore
Haskell) shows the mini-notation in double quotes. The
second example in TidalVortex expresses the same
structure only using lists. Nonetheless they have similar
structures, because functions that take patterns in
Tidal Vortex automatically turn values into patterns, treat
multiple parameters as a sequence that are ‘concatenated’
into a single pattern, and treat lists as subpatterns that are
treated as a single ‘step’ in the sequence. This mirrors the
behaviour of subsequences in the mini-notation.

It’s also possible to define the same pattern without
mini-notation in TidalCycles:

sound $ fastcat
[pure "bd", silence,
fastcat(pure "sd", pure "cp")]

Without mini-notation, the TidalCycles example ends
up being more verbose, as due to Haskell's strict typing,
everything must be expressed as patterns.

% See https:/tidal rg/ for documentation.

1 The re-introduction of a mini-notation is planned,
potentially using Python's parsy library, which is similar
to Haskell's parsec.

The mini-notation angle brackets <> are equivalent to
using the slowcat function in Tidal, so that the
following have identical results:

|sound "bd ~ <sd cp>" |

|sound("bd", silence, slowcat("sd", "cp")) |

In the mini-notation, braces { } denote polymeters,
which are made in Tidal Vortex using the polymeter
function, or its shorthand pm:

|sound "bd {cp sd, 1t mt ht}"

sound("bd", pm(["cp", "sd"],
["1t", "mt", "ht"]))

Similarly, polyrhythms denoted with mini-notation
square brackets [] can be specified with polyrhythm or
it's shorthand pr, and may be embedded:

[sound "bd {cp sd, [1t mt,bd bd bd] ht}" |

sound("bd", pm(["cp", "sd"],
[pr(["1t", "mt"],
["bd", "bd", "bd"]
),
"hi
1))

Note that polyrhythm/pr is equivalent to stack in
TidalCycles, and indeed TidalVortex supports that as an
alias too.

Combining patterns is similar, with Tidal Vortex using
the >> operator:

|sound "bd sd cp" # speed "1 2" |

|sound("bd", "sd", "cp") >> speed (1, 2) |

Unlike in Haskell, it's not possible to add new operators
to Python, but it is possible to repurpose existing
operators, in this case the >> operator usually used for
bit-shifting. This means the full range of TidalCycles
inline operators aren't implementable in TidalVortex,
which will have to use prefix functions and methods
instead.

Applying functions is also similar:

|rev S sound "bd sd" |

|rev(sound("bd", "sd")) |

Functions are also defined as pattern methods, so we
can swap things around, avoiding embedded parenthesis:

|sound("bd", "sd").rev()

In this way, Python's . operator for object methods'' is
used similarly to the $ operator in Haskell, in that they
both separate a function from its input'?. The following
three examples are equivalent, but the final TidalVortex
example avoids some of the potentially confusing
embedded parenthesis. It reads similarly to the
TidalCycles example, only in the opposite direction,
being applied from left to right rather than from right to
left.

|jux rev $ every 3 (fast 2) $ sound "bd sd" |

jux(rev, every(3, fast(2),
sound("bd",

"'sd")))

|sound("bd","sd") .every(3, fast(2)).jux(rev)|

The above three examples demonstrate the use of partial
application, which is built-in to Haskell, but requires a
little work in Python, with the support of the functools
library. In particular, the fast function requires two
parameters as input, namely the factor by which a pattern
is sped up by, and the pattern to be sped up. When it is
given only the first parameter, rather than treating this as
an error, it simply returns a function that accepts the
second argument. Partial application may be a little
difficult to understand in theory, but as we think the
above examples show, is very easy to use in practice.
Without partial application, instead of fast(2), we
would have to write lambda pat: fast(2, pat),
which is much more cumbersome.

As with TidalCycles, arithmetic operators may also be
used with patterns of numbers. For example:

|n ("1 23" + "4 5") # sound "drum"

n (sequence(1,2,3) + sequence(4,5))
>> sound "drum"

In both implementations, the values are matched up
across patterns in order to perform the addition. The
resulting pattern is identical to:

|n "5 [6 7] 8" # sound "drum"

In the previous example, it would be nice if
sequence(1,2,3) + sequence(4,5) could instead
be expressed as [1,2,3] + [4,5]. However, that
would involve overriding the standard, expected

' Note that the dot (.) operator for calling methods in
Python is very different from the dot operator in Haskell
for function composition.

12 In Python an object (conventionally named self), is
passed as the first input to its methods.

behaviour of adding lists together in Python, i.e.
concatenation, and going further with treating lists as
patterns will likely lead to confusion. We are wary of
going too far down this route, but may explore making
this optional in the future. For now, we have to explicitly
turn sequences into patterns before performing such
actions on them.

TidalVortex also supports continuous patterns, for
example sinewave signals:

|speed("1 2 3" + sine) |

|speed(sequence(1,2,3) + sine) |

In the above, the sinewave is continuous, but would be
sampled from in order to combine values with the
discrete pattern on the left. This works out to be roughly
equivalent to:

|Speed "1.93301 2.5 3.06698"

In summary, as a proof of concept, TidalVortex
demonstrates that representational concepts and code Ul
features translate fairly well from Haskell to Tidal Vortex.
Indeed the flexibility of Python's type system means that
there is perhaps a lesser need for a stripped-down
mini-notation for sequences there. If we do without a
mini-notation, everything is expressed within the host
language, which may turn out to be easier to work with
and understand. We do still intend to implement the
mini-notation in TidalVortex, but look towards a broader
aim of unifying Tidal patterns and sequences, as outlined
in a previous paper [12].

4. IMPLEMENTATION

The examples shown in the previous section rely upon a
few concepts that are standard in Haskell but less
common in Python. We will expand a little on some of
these in this section, in particular the functor, applicative
and monadic definitions. Before that though, we go some
way to explaining the basic model for representing
patterns in Python. For full details, see the source code."
As before, where we make statements true of both
TidalVortex and TidalCycles, we refer to them
collectively as Tidal.

In Tidal, time is rational, allowing subdivisions to be
properly represented. As such there is no fixed 'tatum' or
indivisible unit of time, any 'step' can be arbitrarily
subdivided.

4.1 Object classes

In TidalVortex, patterns are represented using object
classes. The objects are treated as immutable, in that
object methods should never change the object, but return

B The TidalVortex source code is available at

github.com/tidalcycles/vortex, under the GPLv3 license.

a new object with any changes made. In other words, all
the object methods are pure functions.

A timespan (also known as an arc) is one of three such
object classes defined in TidalVortex, consisting of a pair
of time values specifying the beginning and end of the
timespan, and methods to perform operations such as
returning the intersection between two timespans.

The second object class represents events, with data
consisting of a value, and a timespan indicating when that
value is 'active'. An event might be a fragment of another
one, which is represented by a second timespan.

The final object class is the pattern itself, which
represents patterned behaviour as a function, with a
timespan as input, and a list of events active during that
timespan as output. This object class already has a large
number of methods for combining and transforming
patterns, although again none of them change the object
that the method is called upon, but rather return a new,
transformed pattern. This reflects the pure functional
underpinnings of Tidal.

This use of object classes allows the end-user to
transform a pattern with methods, but all these methods
have aliases as top-level functions, where a pattern to be
transformed is given as a final parameter. So, to transform
a pattern named pat, we can either call pat.fast(3),
or fast(3, pat). The top-level aliases support partial
application (via the afore-mentioned functools library),
and are only intended for passing to other functions such
as with every in the earlier examples.

4.2 Functor, applicative and monadic operations

As mentioned in the introduction, much of Tidal's
functionality comes from three constructs; a) the
definition of patterns as functors, so that patterns of
values can be manipulated as values, b) the definition of
patterns as applicative functors, so that more than one
pattern of values can be treated as values and therefore
combined using a function with multiple values as input,
and c) the definition of values as monads, so that e.g.
patterns of patterns can be flattened into patterns.

The above paragraph is a bit of a riddle, and we do not
have space to go into implementation details. However,
the practicalities can be explained with simple examples.

sequence(1,2,3).with_value(lambda x: x+1) |

The with_value method, called on the pattern created
by the sequence function, simply applies the provided
function to every value in the pattern, in this case
resulting in a pattern equivalent to sequence(2,3,4).
This is known as the fmap or functor map in Haskell, and
indeed has the same fmap alias in TidalVortex. As
mentioned earlier, the addition operator is overridden for
patterns, so the above can be expressed more simply as:

sequence(1,2,3) + 1

However, we've also seen patterns added to patterns,
like this:

|sequence(1,2,3) + sequence(4,5)

How is that possible? This is where applicative comes
in. With two patterns that you want to add together (pat1
and pat2), the first step is to make a new pattern (patf),
that is a pattern of functions that add the numbers in the
first pattern:

pat1l = sequence(1,2,3)

pat2 = sequence(4,5)

patf =

pat1.with_value(lambda x: lambda y: x + y)

To resolve the pattern of functions back to a pattern of
values, you call the app method, which will match up the
values in pat2 with the functions in patf:

|pat3 = patf.app(pat2)

An end-user live coder would rarely call app directly;
this is what happens internally when you use + to add two
patterns together. But being able to apply a pattern of
values to a pattern of functions, as though they were
simple values being passed to functions, is of great use,
especially as these operations can be chained to work
with functions with more than two inputs. The hard work
in matching up events from the different patterns at play
is done by the app function, so that we can combine
patterns together freely. The app method is also behind
the >> operator in the earlier examples, performing a
union of control patterns.

What about the fabled monadic operations? Consider:

|sequence(1,2,3) .fast(2,4)

We start with a sequence, and then 'speed it up' with the
fast method. But! The parameter to fast is itself the
patterned sequence 2,4'. How can we pattern with
patterns? First, let's define the pattern of factors
separately from the pattern we want to speed up:

pat = sequence(1,2,3)
factor_pat = sequence(2,4)

The first step is to use the with_value method, or here
for brevity its alias fmap:

pat_pat = factor_pat.fmap(lambda factor:
pat.fast(factor)

4 Remember that if you pass more than one value to a
method, it will treat it as a sequence.

This speeds up our pattern, but inside our pattern of
factors. So, we end up with a pattern of patterns of
values. To flatten this to a pattern of values, we call the
bind method:

new_pat = pat_pat.bind() |

Similar to app, bind does the job of matching up the
events in the 'outer' pattern with the events in the 'inner'
pattern. This is difficult to conceptualise, especially when
we remember that patterns aren't data structures, but
functions of time. However this (monadic) bind is very
easy to use in practice, we just use simple functions like
fast without thinking about what's going on under the
hood.

5. CONCLUSION

As a proof-of-concept, TidalVortex succeeds in
demonstrating that it is possible to port the 'essence’ of
Tidal to a multi-paradigm language, and has already seen
successful use in live performance. This work has mainly
been driven by curiosity, but having achieved a working
system, we now have cause to look for motivations to
continue work on it. One motivation is the popularity of
Python, both in terms of the larger pool of developers
able to work on the project, and Python's reserve of freely
available libraries for e.g. graphical programming,
creative coding and machine learning that could open up
new possibilities including new mini-notation parsers,
GUI and user-experience alternatives.

TidalVortex also offers a starting point for further ports
to similar programming languages, representing the
theoretical foundations of Tidal in a multi-paradigm
language. Indeed experimental Tidal ports based on
TidalVortex Zero have already started to appear.'

We have resisted the temptation to map out next steps in
a 'future work' section, but nonetheless work remains to
be done, including documenting the implementation and
way of operation of this experimental software. However
due to its shared inner-workings, the existing TidalCycles
documentation can be adapted to TidalVortex.

Perhaps more than anything, through this project we are
happy to have better understood what Tidal is,
independent of a particular implementation. This not only
has technical but cultural value, where there is often lack
of understanding between communities that form around
particular programming languages. With Tidal Vortex, we
are happy to work against these artificial barriers.

Acknowledgments

Work by Alex McLean on this paper was supported by a
UKRI Future Leaders Fellowship [grant number
MR/V02526].

' For example Kidal, a port of Tidal for the Kotlin

language https:/gitlab.com/ndr_brt/kidal, and Strudel, for
Javascript https:/strudel.tidalcycles.org/

6. REFERENCES

[1T McLean, Alex. ‘Making Programming Languages to
Dance to: Live Coding with Tidal’. In Proceedings
of the 2nd ACM SIGPLAN International Workshop
on Functional Art, Music, Modelling and Design.

Gothenburg, 2014. https://doi.org/10/gfvbzc.

[2] Mclean, Alex. ‘Algorithmic Pattern’. In Proceedings
of the International Conference on New Interfaces
for Musical Expression, 265—70. Birmingham, UK,

2020. https://doi.org/10/gn3zdS.

[3] C. Elliott and P. Hudak, ‘Functional reactive
animation’, in Proceedings of the second ACM
SIGPLAN international conference on Functional
programming, New York, NY, USA, Aug. 1997, pp.
263-273. doi: 10.1145/258948.258973.

[4] McLean, Alex, and Renick Bell. ‘Pattern, Code and
Algorithmic Drumming Circles’. Proceedings of the
Fourth International Conference on Live Coding.
Presented at the International Conference on Live
Coding 2019 (ICLC 2019), Madrid, 16 January
2019. https://doi.org/10.5281/zenodo.3946174.

[5] D. Leijen and E. Meijer, ‘Parsec: Direct Style
Monadic Parser Combinators for the Real World’,
presented at the 11th International Conference on
User Modeling, 2007.

[6] F. Goltz, ‘Ableton Link — A technology to
synchronize music software’, presented at the Linux
Audio Conference 2018, Berlin, Aug. 2018.

[7] Kirkbride, Ryan. "Foxdot: Live coding with python
and supercollider." In Proc. of the International
Conference on Live Interfaces, pp. 194-198. 2016.

[8] S. Wilson, N. Collins, et D. Cottle, Ed., The
SuperCollider book. MIT Press, 2011, pp. 179-207.

[9] B. Bel, "Migrating musical concepts: An overview
of the Bol processor", Computer Music Journal, vol.
22,1n°2, p. 56-64, 1998.

[10] C. Roberts, M. Pachon-Puentes. "Bringing the
tidalcycles mini-notation to the browser" in
Proceedings of the Web Audio Conference, 2019.

[11] D. Ogborn, J. Beverley, L. Navarro del Angel, E.
Tsabary, et A. McLean, "Estuary: Browser-based
Collaborative Projectional Live Coding of Musical

Patterns", in Proce. of the International Conference
on Live Coding (ICLC), 2017.

[12] McLean, Alex. ‘Alternate Timelines for
TidalCycles’. Presented at the International
Conference on Live Coding (ICLC2021), Valdivia,
Chile, 15 December 2021.
https://doi.org/10.5281/zenodo.5788732.

