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Abstract

In the context of the live coding of music and computational creativity, literature exam-
ining perceptual relationships between text, speech and instrumental sounds are surveyed,
including the use of vocable words in music. A system for improvising polymetric rhythms
with vocable words is introduced, together with a working prototype for producing rhythmic
continuations within the system. This is shown to be a promising direction for both text
based music improvisation and research into creative agents.
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2 Introduction

The investigation below touches on a number of fields. The starting point is in live coding,
where humans use formal language as a creative medium. We then examine a formal model of
improvisation in terms of a general model of computational creativity. This sets the main context
for our thesis, which is set at a prospective meeting point between live coding and computational
creativity, being formal musical language.

We note that it is common for humans to map from words to instrumental as well as vocal
articulations in music. We examine motor theory of speech perception, which has us perceiving
not speech sounds but the articulations that encoded them. This suggests that software could
gain much from dealing with musical sounds not as complex auditory signal but as articulations.
This reduction not only allows more efficient processing, but also models certain musical forms in
a way close to human experience.

From here we see great motivation for a system for improvising with synthesised vocables,
finding an immediate and expressive system of representation as a bridge between human and
computational creativity. Thanks to the existence of tools and models such as Karplus-Strong
physical modelling synthesis, Levenshtein edit distance and the synthesis and parsing libraries
within the Haskell programming language, we have been able to follow this motivation through to
working software.

Video examples of the software, and the Haskell source code of the system itself may be accessed
at http://doc.gold.ac.uk/~ma503am/vocable/.

3 Survey: Text, Speech and Improvised Music

3.1 Live coding

Live coding is defined as the modification of rules while they are followed. Typically, live coding
places a programmer on stage, writing software before an audience, generating music and/or
video. The live coder makes incremental edits to the sourcecode of a running program, enacting
each modification with a hotkey. This is made possible through the use of dynamic programming
languages, those allowing new and modified instructions to be hot-swapped at run-time, without
requiring restarts or the loss of state. The live coder projects their screen so that the audience
may see the source code develop while experiencing the musical or visual output of the running
program.

Live coding has shown a recent surge in popularity with some academic (Collins et al., 2003;
Ward et al., 2004; Blackwell and Collins, 2005; Sorensen and Brown, 2007; Zmölnig and Eckel,
2007) and media attention (Andrews, 2006; Uehlecke, 2006). Several international meetings to
discuss and perform livecoding have occurred, most notably Changing Grammars in Hamburg in
2004 and LOSS Livecode in Sheffield in 2007.

Live coding is often related to generative music, which Eno (1996) describes as “. . . planting
seeds into your computer, and then using the computer to grow those seeds for you”. In contrast,
live coding has the human growing the seeds, using the computer as assistant. Here the metaphor
with gardening really falls apart, but we can try to imagine live coding a plant by modifying its
genetics while it grows. The art then would not be in the resulting plant but in its life of growth
as closely controlled by the live coder.

There are several approaches to live coding, from the gradual building of a single function, to
execution of individual blocks of source code in order to modify a synthesis graph, to the editing
and reinterpretation of whole classes in order to change the behaviour of objects in memory.
Through practice, live coders build a repertoire of algorithmic techniques to employ during a
performance. By reflecting on their use of the Impromptu software, Sorensen and Brown (2007)
provide an excellent overview of the kind of algorithms a live coder may employ, with reference to
music theory. They detail their use of probabilistic, polynomial and periodic functions, set theory
and recursion in both synthesis parameters and compositional structures.
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$self->t({sample => ’gabbalouder/0’,

volume => $vol / 1000,

speed => 1,

delay => rand(0.03),

delay2 => rand(0.03),

loops => 1,

shape => 0.99,

cutoff => $cutoff,

resonance => $res,

}

);

Figure 1: Perl code to play a distorted kick drum sample

Live coding may not necessarily involve the use of computers. For example, a leading neo-folk
musician known as ‘Adem’ arranges musical improvisations that he calls ‘Assembly’, where tens
of musicians improvise music together on acoustic instruments. The rules of the assembly are
written on a blackboard while the performers play, each rule enacted by a hand signal. During
such a performance at the Shunt venue in London on the 15th June 2007, a few musicians took
turns adding and modifying rules, which at times took the form of a pictorial score and at others
included alternation — “Long notes, then short notes + repeat” and a conditional — “stamp your
feet if you feel like it”.

3.1.1 Live Coding as Improvisation

If we are live coding a piece of music before an audience, then we can say we are creating a musical
work, or the final form of a musical work, while it is being performed. In fact, this is a definition
of improvisation from the New Grove Dictionary (Nettl, 2001). From this we infer that live coding
is improvising with code.

Nonetheless, there are barriers, both real and imagined, to fully accepting a live coder as an
improviser. Leaving aside the imposing social norms and stereotypes that have developed around
programming culture, one of the biggest problems faced by an improvising live coder is time.
While in some sense it is true that live coders have full control over every sound they make, they
may take minutes to describe one. In contrast a traditional instrumentalist may introduce a new
sound in a single physical movement. Figure 1 illustrates the overhead in typing time alone. In
effect, the live coder is building an instrument while trying to play it — no wonder their response
times may at times be long. More detailed exploration of this problem with reference to human
haptic rates is provided by Collins (2006).

What the live coder may lose in instant expression, they can attempt to gain through higher
order expressivity. That is, the live coder works not only with individual sound events but with
the musical structures they describe. Further, properties shared by a series of sound events may
be abstracted into computer language constructs such as functions, operators or object classes.
Constructing these abstractions is analogous to constructing an instrument, and a change in an
abstraction affects all the sounds generated from them. These abstractions may be specified during
practice and development sessions, in order to greatly improve response times during performance.

These techniques of abstraction are of course common throughout computer science. There is
also much to learn from review in other fields. §3.5 examines how instrumental sounds may be
represented in the field of music, exemplified by tabla and bagpipe notation.

3.2 Improvisation as a Creative System

Wiggins (2006a,b) provides a framework for describing and reasoning about creative systems,
based strongly upon the work of Boden (1990) but with some important additional clarifications.
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The framework terms a creative system as “a collection of processes, natural or automatic, which
are capable of achieving or simulating behaviour which in humans would be deemed creative.”
Here we term the framework the creative systems framework, abbreviated to CSF.

The CSF makes use of the following symbols and functions

c A concept

U A universe of all possible concepts

L A language in which rules may be expressed

R Rules defined within L defining validity of a concept

[[R]] A function interpreting R, resulting in a function indicating adherence of a concept to R

C A conceptual space, defined by [[R]](U)

T Rules defined within L to define a traversal strategy to locate concepts within U

E Rules defined within L which evaluate the quality or desirability of a concept c

〈R, T,E〉 A function interpreting the traversal strategy T , informed by R and E. It operates
upon an ordered subset of U (of which it has random access) and results in another ordered
subset of U .

It is worth distinguishing these terms further. First, between membership of a class of thing,
and valued membership; for example we might recognise an artefact as conforming to all the
syntactical rules of a limerick, but not be funny. Accordingly, R governs membership of concepts
to the limerick class whereas E defines rules which assign value judgements of these concepts. In
contrast, T does not describe anything about the artefact, only how a particular agent may find
it.

3.2.1 Creative behaviour

We may now use this notation to describe different forms of creative behaviour. Simplest is
to recursively apply 〈R, T,E〉 until a desired concept is found within C, perhaps starting with
the empty concept ⊤. Given a C with valued (according to E) yet undiscovered concepts, the
likelihood of success depends entirely on the ability of T to navigate the space.

However, applying 〈R, T,E〉 may locate one or more concepts within U that do not conform
to R and are therefore not members of C. Such a result is termed an aberration.

Concepts in an aberration which do not conform to R may still conform to E and hence be
valued. If all such concepts are valued then we have perfect aberration and R should be transformed
to extend the conceptual space so the new concepts are included. If no such concepts are valued
then we have pointless aberration, and T should be transformed so that the concepts are avoided
in the future. If some such concepts are valued and others not, then we have productive aberration
and both R and T should be transformed.

3.2.2 Improvisation

Following a broad review of research into music improvisation from viewpoints including physiol-
ogy, neuropsychology, folklore, human intuition and artificial intelligence, Pressing (1987) provides
a formal model of human improvisation. For the purposes of this dissertation, Pressing’s model
is termed the Improvisation Model, abbreviated to IM. While the IM is based on research into
human improvisation, and indeed is introduced with the bold heading “How people improvise”,
Pressing puts the IM forward as useful in the design of improvising computer agents.

We cannot necessarily expect an easy, direct mapping between the symbols of the CSF and of
the IM. However Pressing (1987) does discuss creative behaviour in the context of the IM, and
indeed the CSF is in part designed to help us understand and discuss such models. Before we
compare them, we must examine the IM itself.
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3.2.3 The improvisation model

The IM is described using the notation summarised below. Note the prime (’) suffixes do not
appear in the IM, and are only used here to distinguish from notation used in the CSF.

E′ A cluster of sound events

K ′ A sequence of E′ event clusters, where event cluster onsets do not overlap with those
of a following one

Interrupt A trigger to curtail the current K ′ sequence and begins a new one.

I ′ An improvisation, partitioned by interrupts into a number of K ′ sequences

R′ An optional referent, such as a score or stylistic norm

G′ A set of current goals

M ′ Long term memory

O′ An array of objects

F ′ An array of features

P ′ An array of processes

Object, Feature and Process arrays A particular E′ is constructed with reference to its own
set of three arrays; O′, F ′ and P ′. Each array lists a number of factors according to its type, in
particular

• O′ lists the objects, cognitive or perceptual entities such as chords, notes or rests

• For each entry in O′, F ′ lists the available feature parameters, describing shared properties
of an object, such as pitch or modulation

• P ′ lists the processes which govern how an object or feature changes over time, such as “use
trichords”, “follow contour” or “randomly select notes from scale”

Each factor in each array is explicitly given a cognitive strength, weighting the factor according
to the importance or level of attention given to it by the improviser. This strength governs the
amount of influence each factor has over the result, so that a factor with no influence carries a
cognitive strength of 0, and one with high influence a strength towards 1.

A particular configuration of the O′, F ′ and P ′ arrays maps to a particular E′ cluster of
events. We can therefore reduce the problem of improvisation from generating individual events
to generating strengths within array configurations. This reduction is key to the power of the IM,
where decision making is based upon event clusters and not individual events.

So cognitive strengths of array elements are modified to develop an improvisation, but where
do those elements come from in the first place? Pressing (1987) suggests a model based on ecology
where elements of O′ are inferred by invariance in sensory input over time and musical space,
F ′ by similarity or contrast in sensory input, and P ′ by change in an object or along a feature
dimension with time. This is long-term learning, where few changes if any are made during a given
performance, but Pressing suggests that novel behaviour results. This latter claim is made in the
context of references to metaphor, so we assume that novel behaviour results from combining
concepts learned from different sources. In any case we should note that learning may be helpful
to creative systems, but is not in itself a form of creative behaviour.

Pressing goes on to describe a form of what Boden later termed combinational creativity,
giving an example where two parameters in different dimensions namely soft and fast combined
to produce novel soft-fast behaviour.
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Continuation and interrupts A continuation is the generation of new O′, F ′ and P ′ arrays in
order to generate the next event cluster. The IM describes two types of continuation, associative
and interruptive. Associative continuation proceeds with arrays either similar to or straightfor-
wardly contrasting that of the previous E′, while interruptive continuation involves resetting of
many factors within one or more of the arrays. Pressing (1987) refers to an interruptive continu-
ation simply as an interrupt. Each interrupt creates a partition, ending one K ′ and beginning a
new one. With either method, the result is a new set of arrays determining the construction of a
new E′.

Interrupts are triggered with reference to a tolerance for repetition compared to the period of
time since the previous interrupt and the nature of the current K ′. The size of K ′ is considered
along with the strong O′, F ′ and P ′ components shared by its member event clusters.

Pressing (1987) provides examples for continuations both within the context of a melodic
piece and a rhythmic piece. Each example is characterised by the arrays acted upon and the
associative or otherwise interruptive nature of those acts. For example “notes E, A, D; rhythmic
displacement” describes an associative continuation operating on O′ and P ′ while “toss lead shot
in air and catch it” describes an interruptive continuation operating on F ′ and P ′.

3.2.4 The improvisation model as a creative system

Now we consider how we may view the IM as a creative system, and what insights may we gain in
the process. We present how the notation of the CSF might be applied to the IM before visiting
and explaining each notated aspect in turn.

U The universe of possible improvisations, including incomplete improvisations. Non-
specific so that a concept within a music improvisation may be related to one within
another field, for example a dance

c An improvisation, as a timed sequence of of cognitive strengths within the object,
feature and process arrays of an instance of the IM

L Language rules for describing and defining cognitive strengths of objects, features and
processes arranged into arrays

C The musical action space, being the set of possible improvisations conforming to the
referent

R A referent R′ giving a theme, motive, mood and/or score to which the improvisation
should relate. May also include a set of stylistic norms, either implicitly or explicitly

T A method for generating continuations, which modify or reset cognitive strengths

E Rules regarding the suitability or value of a given improvisation

c - The improvisation within on-line operation A major consideration is that the IM
requires on-line operation, being as Pressing (1984) puts it a “problem solving activity that does
not allow editing.” The CSF allows for partial concepts, and so we may consider each traversal
operation as a continuation; generating a new partial concept that includes what has gone before.

L - Language rules The language structure of the IM is that of the Object, Feature and Process
arrays, containing factors governing event generation each with a number denoting its cognitive
strength. Object and Feature arrays consist of straightforward labels but process arrays contains
functions such as “Randomly select notes from scale”, “follow contour” and “use contours”. A
formal method for defining such functions is not provided.
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C - Musical action space as a conceptual space We may strongly relate the conceptual
space C with Pressing’s portrayal of a musical action space (Pressing, 1987), where a particular
point E′ is shown as a certain configuration of the arrays. A sequence K ′ inherits a point in the
action space from its component E′ event clusters, being the point they share or deviate from.

Two different K ′ clusters occupying similar positions are therefore deemed to share a theme.
An improvisation with the structure ABA’C is shown to revisit the neighbourhood of the first
section in the third section before proceeding to the fourth.

R - A referent defining a musical action space Defining the musical action space initially
seems troublesome. There appear to be many influences over it including long term goals and the
stylistic norms that are employed. However here we focus upon what Pressing (1984) terms the
referent, characterised as structures such as a theme, motive and/or score, in other words a set of
pre-conditions. We extend Pressing’s definition to include stylistic norms, because such scores or
motives are often cast within the context of a particular style even if that style is not explicitly
included.

It is important to note that if a referent contains a time dimension, such as a score with a
time axis, then so will the resulting conceptual space. That is, as well as all the other constraints
defined by R, certain concepts will only be permissible during certain time periods within the
improvisation. It would then be up to the traversal strategy to examine the slice of the conceptual
space along its time axis relevant to the current position in the improvisation.

T - Continuations as traversal strategies The continuation of the IM is strongly related to
the traversal strategy within the CSF. However the IM describes a number of possible strategies
for continuation whereas the CSF requires a single traversal strategy. If a traversal strategy is a
function, and each continuation can be likewise formalised as a function, then we need a way of
uniting these continuation functions into a single traversal function.

This is the problem Pressing (1987) alludes to as residual decision-making. He characterises a
number of explanations for how humans make such decisions, namely models based on intuition,
free will, physicalist interaction with the environment and randomness. Indeed, this brief review
of explanations for decision making is reminiscent of Boden (1990)’s review of explanations for
creativity. However, we are not concerned directly with human creativity but with a model for
modelling human-like creative behaviour. We can be content then with a formal model where a
continuation is chosen for example in an IF-THEN-ELSE manner.

The IM places great emphasis on the influence of motor control over an improvisation. It posits
that the improviser generates some ideal sequence of events which they can only realise to the limits
of their training which is never perfect. Their imagined sequence is therefore tempered by what is
realised, as observed by their sensory apparatus, before being fed back into the generation of the
next sequence. Pressing (1999) later presents a model for such referent based human behaviour
in detail and with supporting experimental evidence as Referential Behavior Theory.

We can view such motor control errors as analogous to the aberration classes from the CSF,
as follows. Perfect error - a guitar player following a line to a ‘wrong note’ which does not fit
the stylistic norms but somehow sounds good within the context, taking the theme somewhere
else without requiring some part of it to be dropped. Productive error - for example where that
note has an interesting effect, but clashes with some other aspect of the theme which should be
discarded. Pointless error - the note sounds bad and leads nowhere.

We could model such behaviour by careful inclusion of a pseudo random number generator
in our traversal strategy. Careful because such physical errors occur within certain constraints,
for instance if we pluck a string by mistake, it would likely be one adjacent to that intended.
Another approach would be to use electric motors with sensory feedback in an improvising system,
where the inaccuracy of the motors and environmental interference would colour the output of the
improvisation.

E - Feedback evaluator Pressing (1984, p353) describes an evaluation processor as the primary
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source of feedback, judging output in the context of “goals, previous training, what has gone before,
and the sounds produced by other musicians.” A direct analogy can be drawn with the E rules
of the CSF, which operates on a concept to produce a number reflecting its suitability.

It is not clear however whether such evaluation is only operated on actioned events, or whether
some auditioning is allowed. That is, whether events can be evaluated and discarded without
being put into action. It would seem possible that several concepts may be considered at each
point, and the most suitable chosen. This is suggested by Pressing, and is certainly possible within
the CSF, which allows several concepts from an agenda to be considered at once.

3.2.5 Discussion

The above analysis highlights a number of areas for consideration while translating the IM to a
working computer model. Firstly, one of language; how can we formally describe the Objects,
Features and Processes?

Another key question is that of how traversal strategies are formed. We have understood what
a continuation may look like, but not clearly how one may be chosen over another.

Whereas Pressing may be correct in asserting that new array entries are rarely formed during
an improvisation, we nevertheless need to understand how this occurs when it does, as such
modifications are key to creative behaviour, amounting to transformation of the traversal strategy
T . A fuller application of the CSF would also include transformations to the rules R, perhaps to
model how a score for a new improvisation may be derived from an old one. It may also consider
how E should be transformed so that the system can modify what it considers good and bad with
experience.

Broadly speaking, we have shown that the IM may be described within the CSF. Realising
this has helped clarify the IM and highlight some areas for development. In transferring the IM
to the notation of the CSF we may consider music improvisation in a clearer manner and have a
common language in which to compare it with other models.

3.3 Perception and Production of Speech

Speech production can be modelled as sound excitation plus sound filtration. The excitation
comes from vocal folds being drawn together with a force to cause oscillation between open and
closed by continuous breath pressure from the lungs, the frequency at which depends on muscle
controlling the tightness of the folds. The filtration comprises of several articulators including the
tongue, lips, jaw, velum and larynx, producing sounds in such categories as closed fricative sounds
and open vowel sounds (Cook, 1999a). Their combined positions provide an enormous range of
sounds which may then be combined as articulations producing further compound sounds such
as dipthongs. Some portion of the possible range of sounds are utilised in a particular human
language, with variations as dialect.

The motor theory of speech perception (Liberman and Mattingly, 1985) posits that the produc-
tion and perception of speech are inextricably linked, to the extent that we perceive speech not
as an auditory signal but as a sequence of articulatory gestures. Indeed experiments have shown
human subjects unable to learn a new set of phonemes constructed from non-vocal sounds (Cook,
1999b), suggesting that in order to decode a complex vocal message it must first be simplified as
a sequence of gestures related to our own vocal apparatus.

Auditory illusions support motor theory, for example the McGurk effect, where lip-reading
the word ‘ga’ while simultaneously hearing the word ‘ba’ commonly produces the perception ‘da’
(Cook, 1999b; Banks, 2004). This illusion is made all the more uncanny when the human test
subject finds that opening and closing their eyes changes the sound that they perceive as hearing.
That we perceive a sound half way between the two sounds suggests an internal physical model
decoding the speech signal.

Liberman and Mattingly (1985) describe motor theory in terms of a neurological ‘module’
responsible for both speech perception and production, set in competition with more general
auditory perception. If true this has serious repercussions to musicians interested in using speech
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and speech-like sounds in their work. As noted by Jones (1987), where humans attend to the
verbal information carried by speech, we are to some extent deaf to the complex sounds that carry
it. We can contrast then phonetic perception with nonphonetic perception, the difference between
perceiving the form or the content of a message encoded as speech.

3.4 Articulatory speech synthesis

Articulatory speech synthesis involves construction of a physical model of the vocal tract, and
methods for controlling the voice (excitation) and articulators (filtration) within the model. The
sheer complexity of the vocal tract has hindered its understanding and modelling and so much
research has instead focussed on concatenative synthesis, based upon audio sampling of diphones
from particular human voices. We can say then that articulatory synthesis models the human vocal
tract whereas concatenative synthesis samples it. However speech production is characterised not
only by a physical model but also its control processes. Much can be done to control such prosodic
parameters as intonation, rhythm and stress in concatenative synthesis, but to have full continuous
control a physical model is required. Similarly, voice character parameters such as gender and age
can be adjusted continuously as physical parameters, but in concatenative synthesis require a new
set of diphones recorded for every new age and gender combination.

3.5 Non lexical vocables

A non-lexical vocable is a written, spoken or sung word that has musical but not wider semantic
meaning. In this thesis the term is shortened simply to “vocable”.

The use of vocables is a global phenomenon, for example occurring in Chassidic Jewish tunes,
Japanese Kakegoe, Indian Bols, Northern American Scat singing and Gaelic Diddling (Chambers,
1980). Vocables have found broad uses such as; pedagogy, mnemonic aid, performance, dancing,
musical experimentation and notation.

Chambers (1980) classifies vocables within two categories. The first distinction is between
improvisatory and jelled vocables. An improvisatory vocable is one created by an individual
performer, albeit from an inventory of accepted sounds. A jelled vocable is one prescribed by con-
vention or transcription. There is of course a grey area between these absolutes, where prescribed
vocables may be improvised with to a degree.

The second distinction is between imitative and associative vocables. An imitative vocable
is one intrinsically similar to the instrumental sound it represents. By contrast an associative
vocable is assigned to an instrumental sound or gesture without sharing significant structural or
aural features. In practice this distinction is difficult to make, as Chambers (1980)[p.13] reports:
“Occasionally a piper will say that a vocable is imitative (indigenous evaluation) when analysis
seems to indicate that it is actually associative (analytic evaluation) because he has connected
the vocable with the specific musical detail for so long that he can no longer divorce the two in
his mind.” This also occurs in onomatopoeia, for example an Englishman may hear a hen say
“Cluck”, while his German neighbour will likely perceive the same sound as “Tock tock” (de Rijke
et al., 2003). This again points toward the strong relation between words and perception seen in
§3.3.

3.5.1 Gaelic vocables and Canntaireachd

Canntaireachd is a system of vocables used in bagpipe music, as opposed to Diddling which is the
more general use of “nonsense words” in Gaelic song.

As transcribed in forms such as in Figure 2, Canntaireachd represents only certain aspects of
music, in particular the structure of a piece and the phrasing within it; the emphasis, stresses
and rhythmic patterns. We should not then underestimate the importance of the oral tradition in
Canntaireachd, as Chambers (1980, p.68), warns “As written notation Canntaireachd can convey
a skeleton of the melody and ornamentation of the Pibroch, but without a tutor to flesh out the
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Hinen hoen himen hioen, hinen hoen heen cheen, hinen hoen himen hioen,
hinen cheen hoen hinen, (repeat)
Hinen heen cheen cheen, hinen hioen hioen hioen, hinen heen cheen cheen,
hinen cheen hoen hinen,
Hinen heen cheen cheen, hinen hioen hioen hioen, hinen hoen himen hioen,
hinen cheen hoen hinen.

Figure 2: Excerpt of Var. 1 of “The Cave of Gold” in Nether Lorn
Canntaireachd

musical bones, with a traditional interpretation, the written Canntaireachd is to a large extent
useless”.

Through extensive analysis, Chambers (1980, 117-121) identifies a syllabic structure for Can-
ntaireachd vocables, found to be quite distinct from diddling. Six syllabic formulae were found in
Canntaireachd; V, CV, CVV, VC, CVC and CCVC, where C represents a consonant syllable and
V a vowel syllable. The latter form, featuring a pair of consonants, is rare. Indeed, clusters of
consonants in vocables throughout Scottish traditional music are rare. The vowel syllables tend to
relate to pitch, and consonant syllables to gesture. Chambers (1980) further identifies extensive
formal grammar rules describing which pairs of sounds may follow together.

3.5.2 Bol Syllables in Indian Tabla

In Indian drum and dance music, vocables are known as Bol syllables, which are assigned to
strokes and steps. Like Canntaireachd, Bols are an historic oral tradition, but in recent times
systems of notation have been developed. In this section we focus on Bol syllables in the context
of the tabla drum.

Lacking a pre-existing notation system with a level of detail suitable for his study of tabla
playing, Kippen (1988) proposes a notation system using phonetically written syllables and a
minimal set of symbols. The notation system achieves simplicity by not encoding every aspect of
dynamics and timbre, instead focussing on groups of sounds. Nonetheless the phonetic basis of the
system avoids ambiguity present in other systems such as those based on staff notation (Kippen,
1988, p.xvi). A brief summary of features of the notation system follows.

Each bol syllable is associated with both an articulation and its associated sound. For example
t.e relates to a non-resonating stroke with the 1st finger on the centre of the dāhinā right hand
tabla drum.

Two or more bols may be grouped together into one part. For example dhāti where dhā and
ti are played in quick succession over a single beat.

A pause is indicated by a dash:
dhā - na

Bols that are by convention played but not spoken are enclosed by square brackets:
dhā[ge] - dhı̄ nā

Bols that are optional are enclosed in parenthesis, providing an alternative piece:
dhā(gena) dhāgedhin

Sections that are to be repeated three times, known as tihā’̄ıs, are surrounded by vertical bars:
| kr.a dhā tı̄ ghin - ta dhā |

Further mnemonic symbols are described which may be placed above or below a bol to further
modify how a stroke should be played.

3.5.3 The Bol Processor

Bernard Bel, through close work with John Kippen has developed computer software for the tran-
scription and analysis of tabla rhythm named the Bol Processor. Seeing the expressive power of
textual representation of instrumental sounds, he developed further versions for the generation
of music. While version two of this system retains clear influence from tabla, particularly in its
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hierarchical, polymetric structuring of time, it has been generalised to allow composition in prac-
tically any style of music. This software is a fine example of how expressive textual representation
of music can be, and is a key inspiration for the software underlying this thesis.

3.5.4 Sound poetry

Spoken vocables are not always representative of other sounds, for example they are central in
what is known variously as abstract, concrete or (as here) sound poetry. Here vocables are used
to construct poems without lexical meaning. This is a large area, McCullough (1989) providing a
bibliography running to over a thousand pages.

The Ursonate by Kurt Schwitters is a particularly fine example of sound poetry. A short
excerpt is shown in Figure 3, although the full poem is arranged in four movements over a total
of twenty nine pages, a reading of which takes around half an hour (Elderfield, 1985, pp. 175-
176). Schwitters would perform his Ursonate from memory, an intricate piece composed entirely of
vocables with German intonation, arranged in rhythmic themes permeated with hisses, roars and
crowing. He would often perform to naive audiences who would at first not know how to react but
eventually be reduced to howls of laughter, to which Schwitters would respond by increasing the
volume of his voice still further (Crossley, 2005, p. 18). A final version of the poem was published
as the final edition of Merz magazine (Schwitters, 1932).

dll rrrrr beeeee bö

dll rrrrr beeeee bö fümms bö,

rrrrr beeeee bö fümms bö wö,

beeeee bö fümms bö wö tää,

bö fümms bö wö tää zää,

fümms bö wö tää zää Uu:

Figure 3: Excerpt from the Ursonate by Kurt Schwitters

Some sound poets take things further by rejecting linear transcription as well as lexical meaning.
For example Cobbing (1970) arranges words in a two dimensional pictorial fashion, sometimes
using fragments of words, sometimes obscuring words completely through overtyping. Despite the
nature of the written form of the poem, he would nonetheless use them during poetry readings.

3.5.5 Vocables in computer music

Given the strong relationship between speech and music discussed so far, it is not surprising that
speech also has its bearing on computer music. Two artists are highlighted as examples; David
Evan Jones from the field of electroacoustic music, and Chris Jeffs from the field of intelligent
dance, or braindance music.

Jones (1987, 1990) discusses what he terms “speech like timbre”, equivalent to our use of the
word vocable. In his own pieces “Still life dancing” and “Scritto for computer tape” he uses the
CHANT software (Rodet et al., 1984) to apply vowel like quality to instrumental sounds to allow
us to perceptually relate them to speech like sounds. The listener is then able to focus on the
other timbral qualities of speech and appreciate them as part of the music.

Chris Jeffs, who composes and performs music as Cylob, has developed a speech synthesis
system which features heavily on his “Formant Potaton” album, released in 2007. His speech syn-
thesis features just two low pass and one high pass filter, with each phoneme assigned parameters
found from spectral analysis of Jeffs’ own voice. This speech synthesis is one component of the
Cylob Music System (Jeffs, 2007), developed by Jeffs in Supercollider (§3.8.1) since 2001, with
which Jeffs now composes all his music. While it is possible to identify a song title where it is
repeated as lyrical motif, only occasional lyrical fragments are otherwise discernable. We would
therefore classify this system as vocable rather than speech synthesis. Perhaps because the speech
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Figure 4: Percussive Karplus-Strong Synthesis

synthesis is from the same hand as the rest of the synthesis within the music, the vocable sounds
blend well with the ‘instrumental’ sounds.

We feel that both Jones and Jeffs are successful in using vocal-like sounds to take advantage
of human psycholinguistic classification abilities, while avoiding or obscuring semantic meaning to
place the focus on timbral qualities.

3.6 Karplus-Strong Synthesis

Karplus and Strong (1983) defined a physical model for a plucked string, known as the Karplus-
Strong algorithm or loop filter. The algorithm is computationally cheap, in its simplest form
consisting of little more than a delay loop and an averaging filter, so that even at the time of its
inception could be calculated in real time on commodity hardware.

Karplus-Strong synthesis is perhaps the simplest form of waveguide synthesis, being a model of
a wave travelling along a section of a ‘perfect’ string or tube. Much work has gone into extensions
to the algorithm (Jaffe and Smith, 1997) and into more complete waveguide models (Cook, 2002).
However within the scope of this thesis a simple Karplus-Strong loop filter suffices; while there
may only be two control parameters to the model, they may be controlled continuously to produce
a wide range of expressions.

Figure 4 illustrates an implementation of the Karplus-Strong algorithm in HSC3 (§3.8.1). Each
box represents a unit generator in the language. The input is a burst of white noise, long enough fill
the wavetable DelayN. In this example the wavetable is one hundredth of a second long, specified
by the 0.01 parameter.

The three unit generators, Delay1, * and / work together to average each sample with the
previous one, forming a lowpass filter. This models a ‘dampening’ of the string.

ProbSwitch inverts the sign of samples with a probability of n, called the blend factor. A blend
factor of around 0.5 stops the wavetable acting as a periodic resonator, removing tonal qualities
so that the sound is more like that of a drum. The signal is multiplied by 0.99 so that energy is
reduced before being fed back and added to the input signal.

3.7 Analysis of vocable text

3.7.1 Edit distance and minimum cost path

We aim to represent sounds with word-like strings of characters, so that the morphology of a string
has perceptual significance. If successful we may apply techniques for measuring the similarity of
strings as a measure of the sounds they represent. One such technique is edit distance, being the
minimum number of edit operations required to modify one string to become another.

There are several edit distance measures which differ only in the edit operations that are
allowed. For example, Hamming distance (Hamming, 1950) only has a single ‘replace’ operation
and therefore may only be used to compare two strings of the same length. However as well as
replace, Levenshtein distance (Levenshtein, 1966) allows ‘add’ and ‘delete’ operations, so strings
of arbitrary lengths may be compared. Damerau-Levenshtein distance (Damerau, 1964) further
adds a ‘transpose’ operation, for swapping adjacent positions in a string.
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Levenshtein distance is used within this project for its simplicity, where dynamic programming
techniques may be employed for calculation. In particular, we use an algorithm identified by
Allison (1992), optimised for languages with lazy evaluation such as Haskell.

Before we apply the edit distance, we must choose the unit elements of the strings that we are
editing. For example when measuring edit distance between strings, we may choose to apply the
operations to letters, or combinations of letters such as syllables. We might also choose different
weightings, for example to measure edit between two vowels or two constants of having a lesser
cost than between a consonant and a vowel. However adding such weightings complicates matters,
breaking the assumptions of the efficient algorithm described above so that it no longer applies.

Related to edit distance is the minimum cost path, a sequence of edits to go from one string to
another. In the case of Levenshtein distance, it follows that halfway along a minimum cost path
of edits, we find a new string of equal similarity to the two original strings.

3.7.2 Markov chains

Markov chains may straightforwardly be applied to vocable text, for example by building a statis-
tical model of the likelihood of one vocable following another. Such a statistical model can then
be used for generating new compositions. An illustrative example of a first order Markov chain of
the poem excerpt in Figure 3 can be seen in Figure 5.
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Figure 5: Markov chain of an excerpt of the Ursonate by Kurt Schwitters
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3.8 Haskell

Haskell as a programming language has been most recently standardised as Haskell98 (Jones,
2002), with ongoing work on Haskell’ (pronounced Haskell Prime) which will standardise many
of the extensions existing in popular implementations. The term Haskell is used in this thesis to
describe Haskell98, plus extensions implemented by GHC version 6.6.1.

According to the its homepage at http://www.haskell.org/, Haskell is a general purpose,
purely functional programming language featuring static typing, higher order functions, polymor-
phism, type classes, and monadic effects. The following paragraphs examine these features in
order.

General purpose Despite being an active centre of computer science research, hosting language
features unavailable in more mainstream languages, Haskell is nonetheless in active use in a number
of domains. Conversely, Haskell is also lauded as an excellent host to domain specific language,
due to its clean, highly extendable syntax.

Purely functional With few exceptions for debugging purposes, Haskell only allows pure func-
tions which may not produce side effects. That is they take input and return output, but may not
otherwise engage in any other I/O or modify any external data structure. As a result Haskell’s
functions are guaranteed to produce the same output every time they’re executed with the same
input.

Static typing A statically typed language is one where the types of variables are set at compile
time. Haskell’s type system is featureful, for example the support for type classes allows consistent
interfaces across types. For example a new type may be accepted to the Ord class with a definition
of the compare function. Once that is done all of the sorting functions which operate on Ord may
be used with our type.

Specifying the type of every variable and function can be tiring for a programmer, leading
to criticism of some statically typed languages (such as Java) for requiring it. Haskell however
has advanced type inference so that type information can often be omitted in the sourcecode.
Nonetheless it is recommended to include type declarations for functions in general; types go a
long way to describing what a function does, and can clear up many programmer errors at compile
time.

Higher order functions Support for higher order functions is an important feature of any
functional language. A higher order function is one that is parameterised by or returns one or
more other functions, allowing powerful abstractions.

Polymorphism and Type classes Polymorphism allows unified interfaces across different
types. Haskell supports polymorphism through type classes – a type may be declared a mem-
ber of a class only if it provides a set of functions with names and types defined by that class.

Monadic effects Monads came to computer science from category theory, and have revolu-
tionised pure functional programming by allowing sequences of actions to be described. This has
led to such technologies as monadic parser combinators seen in the excellent Parsec module, and
elegant pure functional solutions to such problems as error handling and I/O.

Earlier we noted that pure functions cannot perform I/O. However using monads they can
describe a sequence of I/O actions to be performed by the caller.

Monads are also used to construct synthesis graphs within HSC3, as described in the following
section.

14



3.8.1 Haskell and Supercollider Server

Supercollider is a computer language designed for music, featuring thorough support for object
oriented programming, a realtime, low latency architecture, and excellent libraries to aide synthesis
and composition. Supercollider version three features a client-server network architecture, where
the supercollider language interpreter is a client to the synthesis engine server. This separation
of concerns allows several advantages detailed in McCartney (2002), but also allows alternative
language clients to interact directly with the supercollider synthesis engine.

Drape (2007) has released a library which provides Embedded Domain Specific Language
(EDSL) for communicating with SuperCollider Server. This allows synthesis graphs to be specified
directly as Haskell source code, for example the synthesis graph illustrated in Figure 4 may be
specified as follows:

ks i = do let (gain, delay, blend) = (in’ 1 KR (offsetU i 15),

in’ 1 KR (offsetU i 17),

in’ 1 KR (offsetU i 18)

)

laggedDelay = lag delay (in’ 1 KR (offsetU i 16))

laggedBlend = lag blend (in’ 1 KR (offsetU i 16))

vFilter i f a b = resonz i f (b / f) * dbAmp a

n = sinOsc AR 200 0

a0 = decay (impulse AR 200 0) 0.0025 * n

a1 = (localIn 1 AR + (a0 * gain))

a2 = delayN a1 0.01 laggedDelay

a3 = delay1 a2

a4 = (a2 + a3) / 2.0

a5 = probSwitch a4 blend

a6 = mix (vFilter a5

(in’ 5 KR (offsetU i 0))

(in’ 5 KR (offsetU i 5))

(in’ 5 KR (offsetU i 10))

)

return $ MRG [localOut (a5 * 0.99), out 0 (MCE [a6, a6])]

Both Supercollider and the Haskell Supercollider library are released using a GNU Public
License, allowing free use and promoting sharing of sourcecode.

4 System for improvisation of rhythms with vocables

The software underlying this thesis is the result of two main research motivations.
The first motivation is to develop a system where rhythms formed of vocables may be impro-

vised in text form. To this end we provide a system for controlling physical synthesis with vocables
within a polymetric syntax.

The second motivation is to investigate machine learning of structure behind textual descrip-
tions of music, with a working prototype of software that makes aesthetically valued edits based
on a corpus of past improvisations.

In practice these two parts are separated in sourcecode but are compiled into a single software
application. For discussion we treat them separately, terming the first part the language and the
second the rhythm generator.

4.1 Language

The language has a polymetric syntax is adapted from that of the Bol Processor version 2 (Bel,
2001).
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data Event = Sound String | Silence

data Structure = Atom Event

| Cycle [Structure]

| Polymetry [Structure]

Figure 6: Haskell data types for representing polymetric structure

A monophonic sequence of vocables is specified simply separated by whitespace, with pauses
denoted with an underscore. For example

boom _ tish takka

*begin* boom *end*- tish takka

Polymetric sequences are surrounded in braces, the different parts separated by commas, for
example

{one two three, four five}

*begin*

one

four

*end*

- two - three -

- - five - -

Notice that pauses are inserted in order to arrange two sequences of different lengths. This
is done using the lowest common multiple of the part lengths. If square brackets are used rather
than braces, then the parts are repeated rather than padded with pauses, thus:

[one two three, four five]

*begin*

one

four

*end*

two three one two three

five four five four five

Polymetric constructs may also be nested:
{boom chakka, bip {bap, bipbap bop}}

*begin*

boom

bip *end*

- - chakka - -

- bap

bipbap

- - -

- bop -

The language is parsed using the Haskell Parsec library (Leijen and Meijer, 2001). It is parsed
into a data type structure shown in Figure 6, where Structure data describe an arrangement of
Event data.

This shows that an Event data type can be instantiated either as a Sound with a String
parameter, or as Silence. A Structure data type describes an n-ary tree, where branches can be
instantiated as Polymetry or Cycle, and leaves with Atom and an Event parameter.

A well formed structure will have Polymetry composed only of Cycle instances, and Cycle
instances composed only of Polymetry and/or Atom instances.

4.2 Onomatopoeic Synthesis - Transforming words into physical model

articulations

Sound synthesis is based on the Karplus-Strong model shown in §3.6. A word is transformed into
a sequence of sets of synthesis parameter changes, where consonants are mapped to the wavetable
size and blend parameters, and vowels are mapped to formant filter parameters.
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The consonant mappings were chosen by hand, using the mouse to select a point on the screen,
where the an x/y position of the cursor is mapped to the wavetable size and blend parameters. Pa-
rameters were chosen to produce a timbre with some similarity to the spoken consonant. However
we placed the greatest effort in producing a broad range of interesting sounds.

The vowel formant values were taken from the female alto voice parameters in the FormantTable
Supercollider library by Putnam (2006).

The sequence of parameter settings is then sent to Supercollider server at fixed rate, giving a
striated rhythm to the articulation. The synthesis graph includes a lag delay for each parameter,
sliding linearly from a previous value to a new one, giving a sense of continuous, speech-like
articulation.

4.3 User interface

The user interface is built upon the GNU Readline library. Readline is a standard interface for
editing lines of text, used in many console applications including the UNIX Bash commandline.
It supports many text navigation and editing features from the celebrated EMACS text editor,
ideal for moving around and manipulating a rhythm expressed as a line of text at speed. It also
supports history, so previous rhythms may be browsed and searched through.

With this interface then, the performer simply types in a rhythm as a line of text, using the
language detailed in §4.1. When they press return, if the line parses then the resulting musical
structure is placed into a shared variable for sequencing by a separate thread. If the line does
not parse, for example due to mismatched parentheses, then an error message is displayed and no
change is made to the sound.

The sequencing thread simply loops the last successfully parsed rhythm, where the vocables
and silences between them are articulated at a fixed rate. Polymetric rhythms are voiced by
assigning concurrent parts of a rhythm to different synthesis graph instances.

We extend the readline interface with two commands. The first is that by pressing the excla-
mation mark key (!), the rhythm currently being edited will be ‘normalised’§4.4.3. The second is
that when the hash (#) key is pressed, a new rhythm is generated to follow from the previous two
rhythms, using statistical analysis of past performances. We describe how this generation is done
in the following sections.

4.4 Statistical model

We have so far introduced the language environment within our software that allows a performer
to improvise with vocables. We now focus on how the software builds a statistical model of use in
order to produce new rhythms.

The statistical model consists of a number of first order Markov chains. Each chain represents
either continuation from one vocable to the next or from one rhythmic pattern to the next.

4.4.1 Vocable continuation

Within a rhythm, a vocable is considered a continuation of a previous one if no other vocables
occur between them. A continuation is sensitive to polymetric structure – two vocable instances
which appear within different parts of the same polymetry may not form a continuation, even if
they appear to be adjacent in a ‘flattened’ form of the time structure. That said, two vocable
instances occurring in different, successive polymetries may form a continuation. This means that
a vocable instance may form a continuation with more than one predecessor and/or more than
one successor.

A first order Markov chain is constructed to represent these continuations.

4.4.2 Rhythmic continuation

Two further Markov chains are constructed in order to represent continuations from previous
rhythmic structures to the next. Taking use the following example of sequence of rhythms used
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during an improvisation:

{boom tish, _ bang tish}

{bam nok tish, _ tish tash}

{bam nok, _ tish tash beee}

We represent a rhythmic structure in the abstract by enumerating each vocable within it,
resulting in what we term a rhythmic schema. For example we represent this rhythm:

{boom tish, _ bang tish}

with the following schema:

{1 2 , _ 3 2}

We also represent similar words within the rhythm. For example our second example:

{bam nok tish, _ tish tash}

results in the following:

{1 2 3, _ 3 4}

S(3, 4)

S(3, 4) represents a constraint. S() may be applied to two constants, in this case 3 and 4, to
signify that variables (here, the vocable words tish and tash) assigned to them should be similar.
Similarity here is a binary measure, where a 50% threshold is applied to Levenshtein distance
(§3.7.1), expressed as a percentage of the length of the longest vocable.

We find such a schema for each rhythm, and build a first order Markov chain describing the
likelihood of one following another.

However this is not fully expressive of the continuation; the reuse of the vocable tish in both
rhythms is lost, as is the similarity between boom in the first rhythm and bam in the second.
To solve this problem we take in more context, where each schema represents a pair of rhythms.
Going back to our example, we would take the first and second rhythms together:

{boom tish, _ bang tish}

{bam nok tish, _ tish tash}

finding:

{1 2 _, _ 3 2}

{4 5 2, _ 2 6}

S(2, 3), S(3, 4)

and then take the second and third rhythms:

{bam nok tish, _ tish tash}

{bam nok, _ tish tash beee}

finding:

{1 2 3, _ 3 4}

{1 2, _ 3 4 5}

S(3, 4)

These two schemata together model a continuation from two rhythmic structures to a third.
Another Markov chain is constructed around these continuations.

We in fact construct Markov chains for both forms of rhythmic schemata; the latter has greater
context but the former is more general. In §4.5 we describe our backoff technique for using them
together.
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4.4.3 Normalisation

We now step back to note a glaring problem with this representation; there is more than one way
of representing equivalent rhythms. In particular, the parts of a polymetry comprise an unordered
set; it is of no consequence which order the parts within polymetric rhythms are in. For example,
the following two rhythms are equivalent:

a) {boom tak, tak _ tok} b) {tak _ tok, boom tak}

So before applying analysis described above, we need to normalise the cycle, so that cycles with
equivalent schemata are represented identically. For this we need a reliable method for finding a
canonical representation of a cycle, in terms of its rhythmic schema. Here our canonical form is
based only upon the enumeration of cycle, not any particular vocables used within it.

The first step in finding a canonical form is ‘compressing’ the cycle. This simply ensures that
Cycles within Cycles are merged, and subcycles containing only Silence atoms are removed.

The second step is a depth-first sort of Polymetry substructures. Only the rhythmic schemata
of the substructures are considered during this sort, because it is only the schemata which we
will later wish to compare. We must perform a depth-first recursive sort, so that the members of
each Polymetry is sorted in turn according to an enumeration of its members. The default Haskell
ordering is used to determine sort order.

For example, the polymetries in the above example would be enumerated thus:

a) {1 2, 1 _ 2} b) {1 _ 2, 1 2}

In our example, a) is the canonical form.
We apply this canonical form to out rhythms before finding the Markov chains of schemata as

described above.

4.5 Generating rhythms

Now we have described the statistical model in the previous section, we can describe how we use
it to generate rhythms. We first identify a rhythmic schema and then fill in the schema with
vocables.

It should be noted that rhythms are intended to be generated on-line, during a musical impro-
visation. This means that once a rhythm is chosen we are committed to that choice; there is no
opportunity for back-tracking to a previous state.

In all cases Markov models are applied using a pseudorandom Monte Carlo algorithm. Where
a predicate is matched, a successor is chosen with a chance proportional to the number of previous
instances of the continuation divided by the total number of instances of the predecessor.

Currently Markov models are not updated on-line - they are built from a corpus of past
improvisations.

4.5.1 Choosing a rhythmic schema

A rhythmic schema is chosen as a continuation of the schemata of the previous rhythmic cycles of
the current improvisation.

First a match against the Markov chain over bigrams of rhythmic schemata is attempted. If
unsuccessful a reattempt is made but with similarity constraints ignored.

If still unsuccessful, a match is attempted against the Markov chain over single schemata.
Again if no match is made, the match is reattempted without considering constraint rules.

If a match has still not been found, a schema is chosen arbitrarily from all those seen before.
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4.5.2 Choosing vocables

Once a rhythmic schema is chosen, vocables are assigned to constants within it. First, a directional
graph of constants is constructed, describing continuations from constant to constant in the same
way as we found vocable continuations in §4.4.1.

We start with the known vocables from the previous cycle. Remaining unassigned constants are
filled in turn. Because we match constants from lower to higher, we can only consider continuations
of constants from lower to higher – with our current model we only apply continuations from
predicates to successors and not in reverse.

We then fill each remaining constant in turn. If there is more than one predicate their successors
within the Markov model are grouped together before Monte Carlo selection is performed. We
first attempt to select from the successors matching any applicable similarity constraints. If no
applicable successors are found, then the software attempts to generate a new vocable that does
fit the constraints. This is done by finding the vocables with which the new vocable shares a
similarity constraint, and applying half the edits on a minimum cost path between them (§3.7.1).

If there are no applicable similarity constraints then there is nothing to base the generation of
a new vocable. In that case a match is reattempted but with the similarity rules ignored. As a
last resort a vocable is picked at random from all those seen before.

5 Evaluation

5.1 The language

Qualitative evaluation of the language was performed by interview using electronic musicians,
all of whom have experience with performing with their own software. A brief demonstration
was given to each interviewee, letting them experiment with the system for ten minutes and then
asking how they felt about using the system. The interviews are recorded in Appendix A, together
with a sample of the rhythmic continuations made by each interviewee. Any deviations from the
described interview format are detailed there.

Feedback during this short term exposure to the language was on the whole encouraging. While
one interviewee saw limitations in the range of timbres produced, others saw opportunities. They
all picked up the system quickly with little or no prompting, apart from explaining the polymetric
syntax.

5.2 The rhythm generator

The rhythm generation aspect of this project deserves a full quantitative evaluation, using a
framework such as Amabile’s Consensual Assessment Technique (Pearce, 2005). Such a detailed
assessment is outside the scope of this thesis, and is left for future work.

Instead we produced three improvisations on consecutive days, and observed the analysis of
them by the rhythm generator. The improvisations has a mean average of 67.7 rhythms each,
totalling 203 rhythms between them. They lasted between 5 and 7.5 minutes. They were produced
in order to explore use of the system, the method of evaluation had not been decided upon prior to
their production. This is of course a very small corpus, but allows us the opportunity to observe
the system in operation at least.

We looked for pivot points, where a Markov model identified a reoccurence of a rhythmic
schema. Our most complex model where the surface data were schemata of pairs of rhythms,
showed one, three and three pivot points within our three improvisations respectively.

Our first backoff step, where constraint rules are ignored showed two, seven and four pivot
points. This suggests both that constraints are indeed constraining the possibilities within our
data, and that the backoff step is useful.

Our second backoff step, with schemata of single rhythms, again had more pivot points; eight,
nine and eleven.
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There were few pivots across improvisations. Pivots were almost all continuations with small
changes, replacing single words with another.

The data is not suitable to base any firm conclusions on; we need a larger corpus to find
whether this system is able to model the style of an improviser across improvisations. In any case,
style is unlikely to emerge without a strong familiarisation the language – what we have captured
here is an improviser exploring the limits and character of the system. It may take months of
practicing and performances before a corpus is available for fuller analysis. We can however see
the system working as intended.

6 Further work

This system leaves many avenues unexplored, in some cases due to lack of time, and in others due
to a desire to keep parts of the system as simple as possible as a clear proof of concept.

Performance rules and timing Our system confirms to a strict time structure, not only
triggering vocables at a fixed rate, but performing articulations within vocables at a fixed rate. In
this form it is therefore unlikely to find much use beyond the limits of electronic dance music. One
approach could be to make the language more expressive of timing, perhaps by allowing uneven
distributions of sound events that are reconciled by subtle adjusting of timing. Another could be
by applying timing rules to rhythms, for example KTH performance rules (Friberg et al., 2006).

Computational creativity We have really only scratched the surface of what is possible, and
not begun to properly evaluate this side of our work. We have shown how vocable words can be a
useful shared language between human and other creative agents, and look forward to developing
this idea further, fulfilling a greater part of the CSF.

Fuller physical models We chose just about the simplest physical synthesis model possible with
which to explore our ideas. A fuller tube resonance model using more complex waveguide synthesis
would open up the range of possible timbre significantly, requiring more complex articulations to
control it.

Improved merging of vocable words Our technique of using the minimum cost path to find
a new vocable half way between two given vocables is useful, but could be improved. The edits
are made from one end of the string to the other, if a method for more evenly distributed edits
along a minimum cost path were possible, that could produce more interestingly blended words.

Word morphology Rather than treating words as a sequence of letters, we could instead con-
sider them as a sequence of syllables. By getting closer to the morphology of for example English
words, we could perhaps strengthen the human perceptual connection between written and syn-
thesised vocable words. Where vocable control is applied to differing synthesis systems, generic
means of mapping vocable morphology to synthesis parameters could well emerge, easing wider
adoption further.

Zeroth order Markov chains Our ‘last resort’ backoff step has been to pick at random from
those data seen before. If this was weighted, so that a datum with many instances was more likely
to be picked than one with few, then resulting continuations would perhaps be more plausible.

Reverse matching Markov chains Our model only considers the likelihood of one datum
following another. When applying vocables within a rhythmic schema where following position
may already have been matched, finding vocable likely to precede another could contribute towards
more plausible results.
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Embedding in other systems Several live programmers have commented that they would
like to see our language embedded in the languages they use. In its present form the system is
simple enough to make this quite feasible, and could result in wider use. It could be particularly
interesting to integrate our vocable synthesis into the Bol processor language environment.

Language The language could be more expressive if functional abstractions were possible, taking
the language into the realm of live coding. How this could be done so that a software agent could
make valued edits is an interesting question, requiring further research. There is also great scope
in developing syntax for musical structure further.

7 Conclusion

We have demonstrated a method for controlling synthesis graphs with vocable words, and found
this to be useful in producing music. We have further demonstrated how the resulting textual
representation is open the analysis and generation of rhythms by software agents.

As we saw in the previous section, many doors have been thrown open to future work. We have
a strong belief that vocable synthesis is a highly promising direction which could have applications
throughout electronic music to aide the expressive specification and manipulation of complex
sounds. We also feel our intuition that representing sounds as vocables could find use in the
search for computational creativity has been supported by our work so far. We hope to properly
investigate and test these feelings and beliefs further in future work.

For the short term though, we are pleased to have built a system suitable for using as part of
group improvisation. It is our hope that this inspires greater focus on the word morphology in
software based music, particularly in improvisatory live coding.

A Interviews

A summary of each interview is shown together with a sample of their input. The interviews
focussed on the vocable synthesis and not the rhythm generation, so all rhythms shown were
typed by the interviewee.

Interviewee A would have preferred a wider range of timbre, and found consonants and vowels
did not produce sounds that you might expect. He found it confusing that words could interfere
with each other in synthesis, behaviour which I corrected before the later interviews. We then
entered a long conversation about “abc”, an interesting textual notation system for fiddle melody
and useful reference for future work.

hello

hell o

ell ho

oooooooooooooooo

oooeeeooooeeeeoooo

ooookkkkooookkkooo

ooo

ooo ooo oo ooo

eee eee eee e

kkk kkk kkk k

oop

eep

uo uop pou eep pee uu

ou _ uo _ aaaaaaaaa

aaa___aaa____aa___
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zzz___zzz\____

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz______________

zoopoopeeuup

egbert__begbert

bip_bop_pop_bob

bip_bop_pop_bob_

bi_bo_po_bo_

bi_bo_po_bo_p_

bi_bo_po_bo_ppppp_

bi_bo_po_bo_ppoppp_

bi_bo_po_bo_pop_

oi_oi oi_oi

oi_oi oi_oi

oi__oi__oi__oi

oi__oi--0

zero zero zoom ___ zoom zero ___

zeeero zeero zoom ___ zoom zero ___

Interviewee B found the system fun to play with, and very accessible. He felt that without a
graphical representation of the rhythm, he had to use his imagination more. He admitted being
a shy person, and self-conscious when typing ‘silly’ words. He started with typing onomatopoeic
words, and while he found it slightly disappointing in the results he found this a good entry point
for exploring the sounds the system could make, after which he understood the system enough to
invent new, interesting sounding vocables.

pok pik pakpot pit

pkkk wiikk

pkpkpk _ gtgtgt eeek

schweeeeiiiuuuuu ploooooeeeeaaaalll

da ji pa xiao ji

{da _ ji _, pa _ xiao _, o cha _ p}

{zhuuu schweeeeuuuuiii, { p t j { y o } } }

{zhuuu schweeeeuuuuiii, { p t j { y o } } bo }

{zhuuu schweeeeuuuuiii, { p t j { y o } }, bo }

zhuuu schweeeeuuuuiii, { p t j { y o } }, bo

zhuuu schweeeeuuuuiii, { p t j { y o } }, bo ba pa

zhuuu schweeeeuuuuiii, { p t j { y o } }, bobdbd ba pa

zhuuu schweeeeuuuuiii, { p { y o } }, bobdbd ba pa

zhuuu schweeeeuuuuiii, { p _ _ _ { y o } }, bobdbd ba pa

pik zhuuu schweeeeuuuuiii, { p _ _ _ { y o } }, bobdbd ba pa

schweeeeeeiiiiiii schwiiiieeeeuuuuuuuuoo

schweeeeeeiiiiiii schwiiiieeeeuuuuuuuu

schweeeeeeiiiiiii schwiiiiuuuuuuuu

schweeeeeeiiiiiiiiiiiiiiiiiiiiiiii schwiiiiuuuuuuuu

wiiiiiiiiiiiiii wooooooooooooooo

Interviewee C was more interested in representing particular rhythms than the previous inter-
viewees. He managed to transcribe a rhythm quite quickly, although has to make conscious effort
to get the various offsets right. He suggested perhaps extra key combinations or visual help could
be included to help with aligning rhythmic parts. He also suggested the notation could be applied
to visual as well as musical form.

{bar foo wii mii, moo}

{tik tik tik tik, moo}
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{tik tik tik tik, moo _ moo _}

{_ tik _ tik, moo _ moo _}

{_ tik _ tik, moo _ moo _, wo}

{_ tik _ tik _ tik _ tik, moo _ moo _ moo _ moo _, wo}

{_ tik _ tik _ tik _ tik, moo _ _ _ moo _ moo _, wo}

{_ tik _ tik _ tik _ tik, moo _ _ _ moo _ moo _}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _, b b b b b b b b}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _, pkpkppkpkpkpkpkppkkp}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _, a b c d e f g h}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _, a b c d e f g h, wooooo

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo _, a b c d e f g h, wooooo oo, wii mii}

{_ tik _ tik _ _ _ tik, moo _ _ _ moo _ moo moo, a b c d e f g h, wooo oooo, wii mii}

Interviewee D was able to install and run the software on his own computer, and returned the
following thoughtful response by email.

It makes some really nuanced sounds that I would find it very hard to program a synth to do
directly.

The sounds it makes often aren’t what I imagined when typing a new word, but by playing
with it interactively, adding pauses, etc. it’s quite easy to map what you’re hearing back to the
words you typed, and then you can quickly learn to direct what it produces - interaction is very
fundamental for it.

I really liked the line at a time interface that is ideal for experimenting, and understanding
that mapping between input and sound. The simplicity means you don’t end up with the aural
equivalent of mixed-together brown plasticine, and clarifies the responsibilities of each word. I
wonder how you could make the system more powerful for more intricate compositions while
keeping the clarity?

I wanted to use capitals for accents, and punctuation for prosody
It is exhilarating to type

[klntrx _ pu po pi _ _ y, {_ ke}, { t tt _}]

and get something sensible back! Going from a programming background where a single typo
ruins the program to being able to freely make words up is quite liberating.

Interviewee E found trying to predict what sounds would be made was engaging. He was
particularly interested in playing with the polymetric syntax, it was initially difficult to understand
but learning how to control the time expansion was fun. He found the range of timbre fine to
play with during this session but thought that it would become tiresome if used for a whole solo
performance. However if it was part of a performance with other instruments it may work better
– often in computer music broad ranges of sounds are used, so it could be nice to identify such a
particular sound as this from a particular improvisor. He was was wondering if the synthesis could
be more like ‘human beat-boxing’. He was disappointed to not find a nice ‘kick’ sound, but did
find other distinctive sounds that gave a sense of orientation within a looped rhythm. He enjoyed
the immediacy of the commandline interface, sliders for letters within a GUI would have become
tiresome.
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