
The Live Loom

Alex McLean
Deutsches Museum
alex@slab.org

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This paper introduces the Live Loom, a warp-weighted hand-loom
augmented with computer control, using a visual live coding envi-
ronment. The traditional weaving technique of colour-and-weave in-
terference patterns are explored, revealing the digital, computational
nature of weaving that predates the invention of discrete mathemat-
ics as it is commonly understood. Early results of live coding such
patterns, in the process of learning how to weave, is shared.

Introduction

Live coding is the exploratory practice of changing code while it runs.
A live coder uses a programming language as a live interface to a
running process, and therefore its inputs and outputs. This allows
the programmer to participate in the performing arts, for example to
create live coded music, video or dance. Live coding may be used
to refer to any use of code in any kind of live situation, but for the
purposes of this paper, we will focus on live coding as live improvisa-
tion, where code is written without a fixed aim, often from a notional
‘blank slate’.

Weaving is a textile craft, where parallel threads known as the
warp are held under tension, allowing a second set of threads known
as the weft to be passed over and under the warp threads to create
a textile fabric. Different textile techniques produce different results;
for example in terms of structure, weaving and knitting have very
little in common with each other.

This paper investigates how live coding and weaving can be
brought together, looking for ways to ground the contemporary prac-
tice of live coding in ancient craft. In the following I take a loosely
auto-ethnographic approach, introducing the Live Loom, and its use
both for understanding weaving and reflecting on the shared history
of live coding and textile practice that it might reveal.

5

mailto:a.alex@slab.org 


Background

Connections between textile craft and computation have been very
well explored in the digital arts and beyond. However, as David Mc-
Callum notes, such work often does not engage with structure or long
history of textiles, but instead treats the three dimensional structure
of weave as a simple grid or raster (McCallum, 2018, 0.3.1). McCal-
lum’s own work explores the notion of ‘glitch’ in media art and how
it transfers to textile structures, but given that the latter has devel-
oped over a far longer period than the former, it is not surprising that
along the way he finds much that media art can learn from textiles.
In the weaving industry, the technology of computer-controlled looms
is of course also well developed. In the present work we are interested
in analogies with live coding and ‘hands on’ computer control. Such
interaction is not afforded by most machine looms, where the human
weaver is replaced by a machine. However, hand-operated computer
controlled looms do exist, and the present work is much inspired by ex-
periments I conducted on the TC1 loom in Textiles Zentrum Haslach,
Austria (McLean and Harlizius-Klück, 2018).

Stitching Worlds is a recent, far reaching project imagining a world
where textiles more overtly formed the basis of contemporary elec-
tronic technology (Kurbak, 2018). Works produced from this project
include the “Embroidered Computer” with Irene Posch and collab-
orators, a working 8-bit computer embroidered in gold. This work
integrates textile electro-mechanical relays into a fabric, demonstrat-
ing that a feminist approach to linking textiles with computing goes
far beyond metaphor - textiles can compute.

Feminist alternative history

Although not the primary focus of the present work, comparing the
contemporary practice of live coding with the ancient craft of hand-
weaving has potential to support and extend a somewhat obscured
feminist history of computation. Feminist perspectives on computing

and weaving are hardly new, a well-known reference point being Sadie
Plant’s influential text “Zeros and Ones: Digital Women and the New
Technoculture” (Plant, 1998). However, the once dominant role of
women in computer programming has been steadily erased since the
1960s and ’70s (Hicks et al., 2017), and despite recent efforts, gender
diversity in software engineering is an ongoing problem.

As a relatively new interdisciplinary practice that tries to reject
hierarchies1, live coding offers an opportunity to build a gender di-
verse culture, and this opportunity is a core topic across live coding
research and practice (Armitage, 2018). Turkle and Papert related
gender to the plurality of relationships between coder and program
observed in children, describing a more conversational approach to
coding, with mid-course corrections rather than fixed-goals as brico-
lage (Turkle and Papert, 1990, p. 136). This approach is certainly
evocative of live coding, with the suggestion being that it is one likely
to be favoured by girls, but discouraged by instructors in favour of
more fixed design processes.

Armitage (2018) brings together female perspectives on live cod-
ing in the Algorave scene, relating one interviewee’s experience of live
coding “. . . as a way of working through their daily life, adding struc-
tures to it and providing functions for being. These lived patterns
merge with their daydreams and expressions of colour and geometry
to form her live coded visuals.” (Armitage, 2018, p. 39). This again
evokes Turkle and Papert’s bricoleur, and indeed the ancient social
and intellectual function of weaving in building a personal cosmos
(Harlizius-Klück and Fanfani, 2017).

Setting aside the Jacquard machine

The Jacquard machine is a well known device for individual con-
trol of threads in the weaving process, classically through the use
of punch cards. From across computer science and popular culture,
the Jacquard machine is often invoked as part of an ‘origin story’ of

1See for example the Algorave Guidelines - https://github.com/Algorave/guidelines

6

https://github.com/Algorave/guidelines


computation, following Charles Babbage’s mention of it as an influ-
ence. However, the Jacquard machine does not do computation, it
is merely a mechanism for accepting input data. The Jacquard ma-
chine therefore brings a fundamental misunderstanding to the topic
of weaving and computation which is very difficult to work around.

Yes, weaving is computational, and yes, the Jacquard machine
allowed data to be fed into that computation. But the same compu-
tational nature is present in all weaving, including traditions of hand
weaving developed over millennia (Harlizius-Klück, 2017). The com-
putation was already there before Jacquard, and by helping automate
the weaving process, his device only takes humans further away from
that computation. So while Jacquard’s machine is often described
in terms of the beginning of the relationship between weaving and
computing, the opposite is true - it was an end.

So let’s try to wipe the Jacquard machine from our minds in the
following discussion, not because the technology isn’t interesting and
useful, but because the discussion around it is so full of misunder-
standing. Once we do that, we are able to see that such machinery
did not introduce any computation to weaving - the computation was
there already. As will become evident in this paper, the computation
is not in the machine, but in the weave.

Introducing the Live Loom

Having set one mechanism aside, I introduce another. The Live
Loom is a warp-weighted loom, with solenoids attached so that warp
threads may be individually picked from software. First, I explain the
technology of the warp-weighted loom, and later explain the electro-
mechanical attachments on the Live Loom.

The primary purpose of any loom is to hold a group of parallel
threads, the warp, in parallel and under tension, allowing weft threads
to be woven over and under the warp threads. The warp-weighted
loom is an ancient technology, where tension comes from the effects
of gravity, by attaching weights to the bottom of the warp threads.
By contrast, on modern looms warp threads are generally horizontal,

and held in tension through mechanical means. The essential compo-
nents of a warp-weighted loom are therefore very simple, consisting
of a frame holding two horizontal bars in place, one to hang the warp
from, and another below separating alternate threads, keeping them
in order, and creating a potential gap (using weaving terminology, the
natural shed) for the weft to pass through by default. The simplicity
of the loom is also its advantage - the simpler the loom, the fewer con-
straints and therefore more possibilities there are to weave complex
structures on it.

The weaving process involves a weft thread going over and under
the warp threads, following one of a very large range of possible pat-
terns, for example creating tabby, twill or satin structures (Emery,
2009, see also Fig. 1). Selective warp threads are pulled forward,
creating a new gap or shed between the pulled and non-pulled warp
threads, through which the weft travels in a straight line. When the
warp threads are returned, the weft is trapped inside, and the next
shed is prepared.

Weaving technology

The Live Loom is shown in Figure 2. Although it carries a contempo-
rary ‘maker’ aesthetic due to its laser cut plywood construction, at its
core, it is a hand-loom following an ancient warp-weighted loom de-
sign. The additional electro-mechanical parts do not replace the core
functions of the loom, but rather augment them in order to allow
threads to be selected using a computer language as well as directly
by hand. The hardware and software designs are available as open
hardware/free software (McLean, 2019).

The Live Loom is fitted with a number of solenoids (currently
sixteen), mounted on two axes to double the number that could oth-
erwise fit in a given space. The solenoids are controlled by an arduino
micro-controller, via a bank of relays. When activated, each solenoid
will push against a stick, which pulls its corresponding warp thread
forward via a string. In this paper we refer to the wooden stick and
string collectively as the heddle. With each solenoid controlling one

7



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Fundamental weave structures, shown with binary ‘draft’ structure (top), simulated weave with light warp and dark weft (middle),
and simulated weave with alternating light and dark warp and weft (bottom). These different structures lead to different physical properties and
therefore uses (Emery, 2009).

8



Figure 2: The Live Loom, a warp-weighted loom, with live-codeable heddles via solenoid actuators.

9



warp thread, the resulting weave is currently constrained to sixteen
threads across.

Crucially, these solenoid movements are not designed to fully cre-
ate a shed. Instead this movement only ‘offers up’ warp threads to
the human weaver-coder, who then pulls the threads further by hand.
This seems like a deficiency of power and leverage, but is not; this
‘offering up’ means the weaver can choose whether or not to pull each
thread. This is particularly useful at the edges of the weave, where
adjustments are often required to produce a good fabric. The sugges-
tive nature of instructions sent via the solenoids reminds of the live
coding choreographic work of Sicchio (2014). We can think of this
process as not directly live coding a textile weave, but instead sug-
gesting bodily movements to produce the weave. When live coding
people rather than computers, it is humane to respect their ability to
exercise creativity and agency in the way they interpret instructions
given to them.

Computing a weave

Before introducing a language for live coding the loom, lets first look
closer at the computational nature of weaving itself, focussing on
colour and weave effects. Such effects bring together different dimen-
sions or systems. Firstly, the structure of the weave - the arrangement
of ups and downs in the grid created by the meeting points of warp
and weft. Secondly, the colour patterning of warp and weft threads.
The visible colour at a particular point of the weave then depends on
two things - whether the warp or weft thread is visible (i.e. whether
the weft is under or over the warp) and what colour that thread is.
The result is an interference pattern between these two systems, cre-
ating a deterministic, logical outcome that is nonetheless very difficult
for the layperson to predict.

As a simple example of this, consider the weave structure shown
in Fig. 3a, known as a draft pattern. The black-and-white grid shows

the pattern of weft ups and downs represented as white and black
squares respectively. For example, the first row shows a weft thread
going under one warp, over two warps, and repeat. The second row
shows a weft thread going under two warps, over one warp, and then
repeating.

There are also coloured squares at the top and bottom, showing
the pattern of warp and weft thread colours respectively, in this case
both alternating between light green and dark blue. In order to find
what colour will be visible, we look at the weave structure. For black
squares, we know the warp colour is shown, so follow the column up
to find its colour, otherwise we follow the row to the left2. From this
we can see that where warp and weft meet with a matching colour
(in this case, every other cell in a checkerboard pattern), the visible
colour cannot be changed by the structure. This is analogous to the
Moire effect seen by placing one net over another, with the visible
result being the interference of the upper and lower structures.

If we plot out the result of this interference between thread colour
and weave structure, we arrive at the image shown in Fig. 3b. This
result will be surprising to a layperson, not only is the vertical and hor-
izontal stripe of warp and weft not visible, but the diagonal runs in a
different direction to the underlying weave structure. This experience
will be familiar to those who have explored algorithmic interference
patterns in livecoding software such as TidalCycles or Hydra, simple
inputs often create unexpected, more complex results.

Finally, Fig. 3c shows a fabric woven using this structure and al-
ternating white and blue threads, created by a workshop visitor on
the Live Loom. The same features hold in the weave itself, although
are not too well defined, due to interaction between the threads, and
variation in density. The left and right edges are a mess, because in
practice such a structure simply cannot be woven at the edges. Weft
threads generally travel from left to right for one row, and from right
to left on the next. Therefore, if a weft ends a row over a warp, and
begins the next row also over a warp, then it will not be woven at that

2In practice, there are other variables which change which colour thread is visible, for example if weft threads are tightly packed, warp threads are hidden completely.

10



(a) Draft Pattern (b) Result (c) Actual result

Figure 3: A draft pattern and the result of virtually and actually weaving it.

point. A more experienced weaver would make consistent changes at
the edges (known as the selvage), such as adding plain weave bor-
der, to ensure a coherent result. The above description of colour and
weave effects should give us pause for thought. Weaving predates
computer programming and indeed discrete mathematics in general,
but nonetheless is a discrete, logical and therefore digital computa-
tional system. Furthermore, any hand-loom affords exploration of
this system. When considering the computational nature of weaving
then, we must be careful not to be dazzled by the machinery or elec-
tronics of industrial and contemporary weaving technology, when it
is the ancient technology of the threads themselves that provides the
environment for computation.

Coding the draft

We have already seen that weaving drafts are a form of code, which
can compute unexpected results when interpreted. Such weaving
drafts are themselves binary, digital images, developed well before
electronic digital computers. It is therefore straightforward to add a

further level of abstraction by using a programming language to create
a draft. The purpose of doing so is to create patterns from patterns,
making a rich space to explore weaving and gain tacit knowledge both
about how it works, and its relation to computation as it is more
conventionally understood in the context of programming languages.
Each such layer of abstraction takes us further away from the mate-
rial, but just as live coding of music brings together the experience
of coding and listening, the Live Loom brings together coding with
seeing and touching.

Figure 4a shows the current version of the Live Loom coding in-
terface. The code is shown on the left, using the visual live coding
interface Texture (McLean and Wiggins, 2011), originally designed as
an exploratory interface for the TidalCycles environment, but here
re-purposed for a system designed for discrete, binary draft patterns.
The set of available symbols and keywords are on the top right, which
may be dragged into the code using a mouse. On the bottom right a
window into the draft pattern is shown, with the row most recently
being sent to the Live Loom marked with blue squares on either side.
Finally the row number is written below, which in this case is higher

11



than the number of rows shown, as the previous rows have scrolled
off the top. The weaver-coder can manipulate the code with a mouse,
while using arrow keys on a keyboard to step forwards (or backwards)
through the draft, sending each warp lift to the loom to be actuated
by the solenoids and woven by the weaver.

Perhaps most notable is what is not shown in the software inter-
face. In particular, simulation of thread colour (such as that shown in
Fig 3) could easily be included, but is not, indeed thread colour is not
dealt with at all in the software, only on the loom. Keeping colour on
the loom takes focus away from any simulation on screen and places
it in the ‘ground truth’ of the material. After all, colour is only one
quality of thread, alongside thickness, material, ply, tightness and di-
rection of twist, tension and density of warp and weft, and so on.
Trying to simulate all of these continuous variables on-screen would
be an insurmountable task, and focussing the software on the singular
task of planning the discrete structure of ups and downs works very
well.

It is important to recognise that although the binary grid of
a weaving draft is contained in two dimensions, the structure it
describes is very much three dimensional. Indeed certain two-
dimensional patterns will result in more than one fabric, one on top
of the other, creating the possibilities of double weave structures.3

Live Loom language

The language currently used by the Live Loom is the pure functional
programming language Haskell, using its list datatype. Standard
Haskell lists are ‘lazily evaluated’, which means that infinitely long
lists can be represented and calculated on demand. A weave struc-
ture is simply represented by a one dimensional list of Boolean values,
where true and false stands for up and down (or if you prefer, over
and under) respectively.

Listed in Table 1.1 below, the current number of functions for
composing draft patterns on the Live Loom is small but already pro-
vides a very rich space of possibility. The weaver-coder begins with

a list of ups and downs, then applies functions to transform that list
and/or combine it with other lists. The result is a language interface
that produces surprisingly complex results from simple elements.

name description
[] An empty list
: Adds a value to a list
up / down Keywords representing the boolean values

of up (over) and down (under)
cycle Repeats a list forever
backforth Reverses every other row
offset n Offsets each row from the last, by the given

number of threads
shift Shifts each row by one thread
rev Reverses each rows
every n f Selectively applies function f to every nth

row
invert Turns all ups to downs, and vice versa
zipAnd a b Combines two lists, resulting in up when

both lists have an up
zipOr a b Combines two lists, resulting in up when one

or both lists has an up
zipXOr a b Combines two lists, resulting in up when

only one list has an up

Table 1.1: The values, functions and operators available in the Li-
ve Loom code interface.

Working at the Live Loom

Figure 4 shows the Live Loom software interface next to the woven
outcome. This starkly shows the perceptual gap between code, draft
and weave, with little visual correspondence despite the structures of
the draft being a logical outcome from the code, and the weave being
that of the draft. The code is represented as a branching tree, the

12



visual interface directly showing the branching normally represented
by parenthesis (McLean and Wiggins, 2011). This particular code
creates the draft pattern shown, which perhaps has the appearance
of vines growing up a wall. When this structure interferes with the
alternating colours of warp and weft, the final result appears in the
weave as (to my eyes) legs leaping into the air (Fig. 4b).

It is humbling that this leap from draft to weave constitutes an-
cient knowledge, demonstrating mathematical logic that predates our
conventional view of mathematics. This brings historical grounding
to the analogous logical leap from code to draft, shown alongside.

It is worth noting that adding an additional level of abstraction
to the drafting of weaves is not novel. Indeed, it is very common in
weaving for patterns of threads to be grouped into a number of shafts,
where weave structure is created by patterns for lifting these shafts.
The binary grids we consider in the present paper are in such cases
drawn down from a draft composed of of threadings (how the threads
are grouped into shafts) and treadlings (how the shafts are lifted over
time). In a sense, the live coding language introduced in this paper
provides a flexible, interactive alternative to lift plans.

Music of the loom

The solenoids are not triggered at once but in sequence, to even out
the use of electrical power, with less needed to hold a solenoid than
to move it. The most time-efficient way to do this would be to trigger
the ‘up’ threads, pulling the warps one after the other, evenly spaced
in time. However I have found it much more useful to include ‘down’
threads in the timing, so each row takes the same amount of time to
actuate, no matter how many warps are being pulled forward. This
gives a clear rhythm to each row, where the ‘clunk’ of a solenoid is
heard for an up, and a silent pause is heard for downs. This rhythm
breathes life into the weaving process, making it easier to orient myself
in the pattern and spot errors, as I compare the rhythm I hear with
the threads I see. It also brings rhythmic enjoyment to the repetitive
nature of weaving, compelling me forward into the next row.

The solenoids have a particular ‘duty cycle’, meaning that it is
best not to keep them activated for too long, otherwise they may
overheat. Once a solenoid is activated, the micro-controller holds it
in place, giving enough time for the weaver to place a hand on the
heddles and pull selected warp threads forward. Although born from
a technical need, these few seconds add an additional sense of regu-
lated timing to the process of weaving. However if the heddles are
not caught in time, the weaver-coder can repeat the lift with a quick
press of the up arrow key. The weaver can also unweave by stepping
backwards through the structure with the left arrow, removing rather
than adding the weft by hand, for each step.

Live Coding

So far we have discussed action, but not live reaction. We have looked
at coding the loom with a draft, and coding the coding of the loom
by introducing a language for composing a draft, but we haven’t dis-
cussed live coding - the changing of code in response. Let’s do that
now.

Changing patterns

Live coding of music is often characterised by comparatively slow,
continuous changes. Changes are heard immediately, but the com-
plexity of music grows with the code. The experience of the Live
Loom is rather different, where a small change tends to have a large,
global effect, but each change takes time to become apparent; rows
are only produced at a rate of a few per minute, and it might take
two or three repeats of a pattern before its nature can really be felt.
These big differences from small edits are due to multiple levels of
interference, between code, draft and weave.

A change from one pattern to the next also presents a problem of
transition, where one pattern might not sit well with the next, poten-
tially creating a physically uneven structure, with undesirable floats
(see below). It can take a disturbed row or two before the weave set-

13



tles into the next structure. There are certainly parallels here with
live coding music and indeed music in general, where a sudden change
can be jarring, without a careful transition. Managing this transition

is probably best done at the loom, adjusting each shed at the heddles
by hand.

At this slow pace of change though, we are in the domain analo-

(a) Code (left) and resulting draft structure (bottom right)

(b) Resulting weave

Figure 4: Live Loom software interface and the woven result

14



gous to slow coding rather than frenzy of an algorave. Where each
decision has long term consequences, there is a need for careful con-
sideration. Furthermore in weaving we work with physical thread,
rather than with the metaphorical thread of time as with live coding
of music. This means that we are able to undo a weave in a way
that we cannot undo music, and change our minds. By unweaving,
the weaver, like the mythological figure of Penelope, resists external
forces.

Embracing error

Live coders are known for embracing error, and so it is fortunate that
it is so easy to produce a draft which is unweavable. For example,
there is the problem of ‘floats’, lengths of unwoven fibre created wher-
ever there is a contiguous series of either ups or downs in the warp or
weft direction. Indeed, where there are only either ups or downs in
a given row or column, that thread will not be woven into the fabric
at all. In response to a problematic draft, the weaver can do one
of three things – change the code to look for a more weavable draft,
ignore activated heddles or pull additional ones to change the weave
directly, or just attempt to weave the pattern anyway.

In the draft shown in Figure 5a, the draft looked unweavable to
my naive eyes, due to the pairs of identical rows within it. Where
this happens, pairs of consecutive wefts are passed through the same
shed. I thought this would result in a mess, but out of curiosity went
ahead anyway to produce the weave shown in Fig. 5b. I found that
with care the wefts would still run parallel and stay in order, largely
maintaining the ‘correct’ structure on-screen. Furthermore, because
the repeat in the draft consists of an odd number of rows, and I was
weaving with two different wefts, the wefts would alternate between
either travelling through the same shed from one side to the other
together, or in opposite directions. By embracing this ‘error’ I ar-
rived at a (to me) surprising, pleasing, and subtle result, although
there are undoubtedly many such surprises on the way to becoming
an experienced weaver, and I have far to go.

Weaving the edit

Decisions at the Live Loom are taken slowly, responding to problems
and opportunities as they arise in the weave. Figure 6a shows the
starting point for another improvised weave, a draft appearing to be
a kind of hatched vertical pattern, drifting downwards to the left,
with lines sometimes joining or breaking. When it came to weaving
this structure (see Fig. 7), two features slowly became apparent –
the pervasive pairs of ups and downs on the weft, offset from one row
to the next, seemed to result in the warp spreading out vertically,
and therefore partially hiding the warp at points where I expected it
to be visible. This created an a partly weft-faced weave. However,
some long floating threads were present on the warp direction, and the
weft-facing only accentuated the presence of these long warps lying
on top.

After weaving 20 rows of this pattern (Fig. 7), I hit a snag - the
pattern of repeating warp floats drifted until they sat at both edges
of the fabric, seen in Fig. 6b. I realised that having floats at the
selvage would cause the textile to lose its otherwise uniform width,
and I decided I neither wanted this effect or to change it by hand; I
had been enjoying working the two wefts together at the selvage, and
felt that having a warp float there would create a mess. So instead I
changed the structure to that seen in 6c, adding code to invert every
other row, as an effort to break up warp floats. However, after a few
rows of weaving the edit (Fig. 7) to the point in the interface shown
in Fig. 6d, I realised that by breaking up some floats, I had only cre-
ated new ones. Another tweak shown in Fig. 6e, this time changing a
number from 3 to 1, seemed to fix it. However once I started weaving
I realised the floats were still there, but now so long that they took
up the whole edge and so were no longer visible on-screen!

This time I decided having such long floats was an interesting
enough challenge to pursue, and embraced this compounded error as
an opportunity to experiment more with creating extra binding points
at the selvage by hand. I continued with this structure for 53 rows,
up until the point seen in Fig. 6f. The resulting weave shown in 7c

15



did indeed turn out to be interesting, the resulting weave curiously
appearing to be much more coherent than the draft pattern. As the
long floating warp threads stepped one warp to the left, they cycled

between white and blue, over a steep diagonal. This time, the result-
ing motif reminded me of Quipu knots. The resulting experimental
weave we have seen in Fig. 7 charts an experiment in three stages.

(a) Live Loom code and draft showing pairs of identical rows.

(b) The resulting weave, showing pairs of wefts
that have travelled through the same shed.

Figure 5

16



(a) (b) (c)

(d) (e) (f)

Figure 6: Screenshots of Live Loom interface at six different points in the weaving of fabric (see Fig. 7)

17



First, the initial serendipitous discovery of a) a weft-faced structure
with warp floats. Then transition b) as I searched for a solution to
a perceived problem at the selvage. Finally a longer section c), with
some manual experimentation at the selvage. The resulting fabric
tells a story of its making, from a starting point, to prevarication
and decision, with further learning points charted along the edge as I
learned to deal with the selvage.

Conclusion

This paper has explored how the principles of live coding may apply to
the warp-weighted loom. However, in connecting a live coding pattern
language to the practice of weaving, we find that weaving is already
abundant with computational patterns, and in particular that histor-
ical drafting techniques already demonstrate a similar computational
abstraction from the resulting woven textile, as code does from me-
dia in the live coded performing arts. Nonetheless by adding another
layer of abstraction to that which has been present in weaving since
ancient times, and using solenoids in communicating movement from
the code to the weaver, the Live Loom allows creative exploration of
woven patterns in a way that is sympathetic to the repetitive, yet
cognitive nature of hand-weaving. There is much to follow the pre-
liminary work introduced here. This paper has purposefully focussed
on understanding of weave from the perspective of live coding, taking
care to have respect for this technological craft that has developed
since Ancient times. It could be however that weaving practice could
benefit from such a computer language interface, for example replac-
ing the current relatively time-consuming process of uploading bitmap
images whenever the pattern is changed on a TC2 loom. Introducing
‘real’ trained weavers to the Live Loom would undoubtedly also turn
up valuable criticism of its design. Furthermore while some hands-
on workshops have already been conducted, more involved long-form
work with workshop participants are needed to explore the possi-
bilities of the loom in helping people explore the complexities and
possibilities of hand-weaving.

(a)

(b)

(c)

Figure 7: Result of improvised weave edits shown in Figure 6

18



Acknowledgements

This research is conducted by the PENELOPE project, with funding
from the European Research Council (ERC) under the Horizon 2020
research and innovation programme of the European Union, grant
agreement No 682711.

References

Armitage, J., 2018. Spaces to Fail in: Negotiating Gender, Commu-
nity and Technology in Algorave. Dancecult: Journal of Electronic
Dance Music Culture 10, 31–45. https://doi.org/10.12801/1947-
5403.2018.10.01.02

Emery, I., 2009. The Primary Structures of Fabrics: An Illustrated
Classification, 01 edition. ed. Thames; Hudson Ltd, New York, N.Y.

Harlizius-Klück, E., 2017. Weaving as binary art and the alge-
bra of patterns. TEXTILE Cloth and Culture 15, 2017, 176–197.
https://doi.org/10.5281/zenodo.3342554

Harlizius-Klück, E., Fanfani, G., 2017. (B)orders in Ancient
Weaving and Archaic Greek Poetry. https://doi.org/10.5281/
zenodo.840005

Hicks, M., Aspray, W., Misa, T.J., 2017. Programmed Inequality:
How Britain Discarded Women Technologists and Lost Its Edge in
Computing, 1 edition. ed. MIT Press, Cambridge, MA.

Kurbak, E. (Ed.), 2018. Stitching Worlds: Exploring Textiles and
Electronics. Revolver Publishing, Berlin.

McCallum, D.N.G., 2018. Glitching the Fabric: Strategies of new
media art applied to the codes of knitting and weaving.

McLean, A., 2019. Kairotic/liveloom: Solenoid two. https:

//doi.org/10.5281/zenodo.3346032

McLean, A., Harlizius-Klück, E., 2018. Fabricating Algorithmic
Art, in: Parsing Digital. Austrian Cultural Forum, London, UK, pp.
10–21. https://doi.org/10.5281/zenodo.2155745

McLean, A., Wiggins, G., 2011. Texture: Visual notation for the
live coding of pattern, in: Proceedings of the International Computer
Music Conference 2011. pp. 612–628.

Plant, S., 1998. Zeros and Ones: Digital Women and the New
Technoculture, New Ed edition. ed. Fourth Estate, London.

Sicchio, K., 2014. Data management part III: An artistic frame-
work for understanding technology without technology. Media-N:
Journal of the New Media Caucus 10.

Turkle, S., Papert, S., 1990. Epistemological pluralism: Styles
and voices within the computer culture. Signs 16, 128–157.

19

https://doi.org/10.12801/1947-5403.2018.10.01.02
https://doi.org/10.12801/1947-5403.2018.10.01.02
https://doi.org/10.5281/zenodo.3342554
https://doi.org/10.5281/zenodo.840005
https://doi.org/10.5281/zenodo.840005
https://doi.org/10.5281/zenodo.3346032
https://doi.org/10.5281/zenodo.3346032
https://doi.org/10.5281/zenodo.2155745

	The Live Loom

