
Contents

1 Computer Programming in the Creative Arts . 1
Alex McLean and Geraint Wiggins
1.1 Introduction . 1
1.2 Creative Processes . 4

1.2.1 Creative Process of Bricolage . 5
1.3 Anthropomorphism and Metaphor in Programming 6
1.4 Symbols and Space . 8
1.5 Components of creativity . 12
1.6 Programming in Time . 15

1.6.1 Interactive programming . 16
1.7 Conclusion . 16
References . 17

v

Page:vi job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

Chapter 1
Computer Programming in the Creative Arts

Alex McLean and Geraint Wiggins

Abstract Computer programming is central to the digital arts, and is a compara-
tively new creative activity. We take a anthropocentric view of computer program-
ming in the arts, examining how the creative process has been extended to include
the authorship and execution of algorithms. The role of human perception in this
process is a focus, contrasted and ultimately combined with a more usual linguis-
tic view of programming. Practical impacts on the notation of programs in the arts
are highlighted, both in terms of space and time, marking out this new domain for
programming language design.

1.1 Introduction

Computer programming for the arts is a subject laden with misconceptions and far-
flung claims. The perennial question of authorship is always with us: if a computer
program outputs art, who has made it, the human or the machine? Positions on cre-
ativity through computer programming tend towards opposite poles, with outright
denials of creativity at one end and outlandish claims of unbound creativity at the
other. The present contribution looks for clarity through a human-centric view of
programming as a key activity behind computer art. We view the artist-programmer
as engaged in a inner human relationship between perception, cognition and com-
putation, and relate this to the notation and operation of their algorithms.

The history of computation is embedded in the history of humankind. Compu-
tation did not arrive with the machine: it is something that humans do. We did not
invent computers: we invented machines to help us compute. Indeed, before the ar-
rival of mechanical computers, “computer” was a job title for a human employed

Alex McLean
Goldsmiths, University of London, e-mail: alex@slab.org

Geraint Wiggins
Goldsmiths, University of London e-mail: g.wiggins@gold.ac.uk

1

2 Alex McLean and Geraint Wiggins

to carry out calculations. In principle, these workers could compute anything that
modern digital computers can, given enough pencils, paper and time.

The textile industry saw the first programmable machine to reach wide use: the
head of the Jacquard loom, a technology still used today. Long strips of card are
fed into the Jacquard head, which reads patterns punched into the card to guide
intricate patterning of weaves. The Jacquard head does not itself compute, but was
much admired by Charles Babbage, inspiring work on his mechanical analytical
engine (Essinger; 2004), the first conception of a programmable universal computer.
Although Babbage did not succeed in building the analytical engine, his design
includes a similar card input mechanism to the Jacquard head, but with punched
patterns describing abstract calculations rather than textile weaves.

This early computer technology was later met with theoretical work in mathe-
matics, such as Church’s lambda calculus (Church; 1941) and the Turing machine
(Turing; 1992, orig. 1947), which seeded the new field of computer science. Com-
puter programmers may be exposed to these theoretical roots through their educa-
tion, having great impact on their craft. As it is now practised however, computer
programming is far from a pure discipline, with influences including linguistics,
engineering and architecture, as well as mathematics.

From these early beginnings programmers have pulled themselves up by their
bootstraps, creating languages within languages in which great hierarchies of in-
teracting systems are expressed. Much of this activity has been towards military,
business or scientific ends. However there are numerous examples of alternative
programmer subcultures forming around fringe activity without obvious practical
application. The Hacker culture at MIT was an early example (Levy; 2002), a group
of male model-railway enthusiasts and phone network hackers who dedicated their
lives to exploring the possibilities of new computers, under the pay of the mili-
tary. Many other programming cultures have since flourished. Particularly strong
and long-lived is the demoscene, a youth culture engaged in pushing computer an-
imation to the limits of available hardware, using novel algorithmic techniques to
dazzling ends. The demoscene spans much of the globe but is particularly strong in
Nordic countries, hosting annual meetings with thousands of participants (Polgár;
2005).

Another, perhaps looser, programmer culture is that of Esoteric Programming
Languages or esolangs, which Wikipedia defines as “programming language(s) de-
signed as a test of the boundaries of computer programming language design, as a
proof of concept, or as a joke”. By pushing the boundaries of programming, esolangs
provide insight into the constraints of mainstream programming languages. For ex-
ample Piet is a language notated with fluctuations of colour over a two dimensional
matrix. Programs are generally parsed as one dimensional sequences, and colour is
generally secondary notation (Blackwell and Green; 2002) rather than primary syn-
tax. Piet programs such as that shown in Figure 1.1 intentionally resemble abstract
art, the language itself named after the modernist painter Piet Mondrian. We return
to secondary notation, as well as practical use of two dimensional syntax in §1.4.

Members of the demoscene and esolang cultures do not necessarily self-identify
as artists. However early on, communities of experimental artists looking for new

Page:2 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 3

Fig. 1.1 Source code written
in the Piet language with two
dimensional, colour syntax.
Prints out the text “Hello,
world!”. Image c© Thomas
Schoch 2006. Used under the
Creative Commons BY-SA
2.5 license.

means of expression grew around computers as soon as access could be gained.
In Great Britain, interest during the 1960s grew into the formation of the Com-
puter Arts Society (CAS)1 (Brown et al.; 2009). However after a creative boom
CAS entered a period of dormancy in the mid 1980s, perhaps drowned out by ex-
tensive commercial growth in the computer industry at that time. CAS has how-
ever been revived in more recent years, encouraged by a major resurgence of soft-
ware as a medium for the arts. This has seen a wealth of new programming en-
vironments designed for artists and musicians, such as Processing (Reas and Fry;
2007), SuperCollider (McCartney; 2002), ChucK (Wang and Cook; 2004), VVVV
(http://vvvv.org) and OpenFrameworks (openframeworks.cc), joining
more established environments such as the Patcher languages (Puckette; 1988),
PureData and Max. These have gained enthusiastic adoption outside a traditional
base focused on academic institutions, and have proved useful for teaching the con-
ceptual visualisation required to program computers.

Several artist-programmers have made their own, novel languages in which to
make their art. These often seem like esoteric languages that have found practi-
cal application. For example unique representations of time are central features of
ChucK and SuperCollider. Programming languages have themselves been exhibited
as works of art, such as the Al-Jazari music programming environment shown in
Figure 1.2 (McLean et al.; 2010). Programming languages made for artists have
created new and emerging approaches to language design. This is not just a matter
of technical achievement, but brings important psychological issues to the fore.

What is the relationship between an artist, their creative process, their program,
and their artistic works? We will look for answers from perspectives of psychology,

1 www.computer-arts-society.org

Page:3 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

4 Alex McLean and Geraint Wiggins

Fig. 1.2 The robots of the Al-Jazari language by Dave Griffiths (McLean et al.; 2010). Each robot
has a thought bubble containing a small program, edited through a game pad.

cognitive linguistics, computer science and computational creativity, but first from
the perspective of an artist.

1.2 Creative Processes

The painter Paul Klee describes a creative process as a feedback loop:

“Already at the very beginning of the productive act, shortly after the initial motion to create,
occurs the first counter motion, the initial movement of receptivity. This means: the creator
controls whether what he has produced so far is good. The work as human action (genesis)
is productive as well as receptive. It is continuity.” (Klee; 1953, p. 33, original emphasis)

This is creativity without planning, a feedback loop of making a mark on canvas,
perceiving the effect, and reacting with a further mark. Being engaged in a tight
creative feedback loop places the artist close to their work, guiding an idea to un-
foreseeable conclusion through a flow of creative perception and action. Klee writes
as a painter, working directly with his medium. Programmer-artists instead work
using computer language as text representing their medium, and it might seem that
this extra level of abstraction could hinder creative feedback. We will see however
that this is not necessarily the case, beginning with the account of Turkle and Papert
(1992), describing a bricolage approach (after Lévi-Strauss; 1968) to programming
by analogy with painting:

Page:4 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 5

The bricoleur resembles the painter who stands back between brushstrokes, looks at the
canvas, and only after this contemplation, decides what to do next. Bricoleurs use a mastery
of associations and interactions. For planners, mistakes are missteps; bricoleurs use a navi-
gation of mid-course corrections. For planners, a program is an instrument for premeditated
control; bricoleurs have goals but set out to realize them in the spirit of a collaborative ven-
ture with the machine. For planners, getting a program to work is like “saying one’s piece”;
for bricoleurs, it is more like a conversation than a monologue.

(Turkle and Papert; 1990, p. 136)

This concept of bricolage accords with Klee’s account, and is also strongly re-
lated to that of the reflective practice (Schon; 1984). This distinguishes the normal
conception of knowledge, as gained through study of theory, from that which is
learnt, applied and reflected upon while “in the work”. Reflective practice has strong
influences in professional training, particularly in the educational and medical fields.
This suggests that the present discussion could have relevance beyond our focus on
the arts.

Although Turkle and Papert address gender issues in computer education, this
quote should not be misread as dividing all programmers into two types; while
associating bricolage with feminine and planning with male traits (although note
Blackwell; 2006a), they are careful to state that these are extremes of a behavioural
continuum. Indeed, programming style is clearly task specific: for example a project
requiring a large team needs more planning than a short script written by the end
user.

Bricolage programming seems particularly applicable to artistic activity, such
as writing software to generate music, video animation or still images. Imagine a
visual artist, programming their work using Processing. They may begin with an
urge to draw superimposed curved lines, become interested in a tree-like structure
they perceive in the output of their first implementation, and change their program to
explore this new theme further. The addition of the algorithmic step would appear
to affect their creative process as a whole, and we seek to understand how in the
following.

1.2.1 Creative Process of Bricolage

Figure 1.3 characterises bricolage programming as a creative feedback loop encom-
passing the written algorithm, its interpretation, and the programmer’s perception
and reaction to its output or behaviour. Creative feedback loops are far from unique
to programming, but the addition of the algorithmic component makes an additional
inner loop explicit between the programmer and their text. At the beginning, the pro-
grammer may have a half-formed concept, which only reaches internal consistency
through the process of being expressed as an algorithm. The inner loop is where
the programmer elaborates upon their imagination of what might be, and the outer
where this trajectory is grounded in the pragmatics of what they have actually made.
Through this process both algorithm and concept are developed, until the program-

Page:5 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

6 Alex McLean and Geraint Wiggins

Fig. 1.3 The process of action
and reaction in bricolage
programming

mer feels they accord with one another, or otherwise judges the creative process to
be finished.

The lack of forward planning in bricolage programming means the feedback loop
in Figure 1.3 is self-guided, possibly leading the programmer away from their initial
motivation. This straying is likely, as the possibility for surprise is high, particularly
when shifting from the inner loop of implementation to the outer loop of perception.
The output of a generative art process is rarely exactly what we intended, and we
will later argue in §1.5 that this possibility of surprise is an important contribution
to creativity.

Representations in the computer and the mind are evidently distinct from one
another. Computer output evokes perception, but that percept will both exclude fea-
tures that are explicit in the output and include features that are not, due to a range
of effects including attention, knowledge and illusion. Equally, a human concept
is distinct from a computer algorithm. Perhaps a program written in a declarative
rather than imperative style is somewhat closer to a concept, being not an algorithm
for how to carry out a task, but rather a description of what is to be done. But still,
there is a clear line to be drawn between a string of discrete symbols in code, and
the morass of both discrete and continuous representations which underlie cognition
(Paivio; 1990).

There is something curious about how the programmer’s creative process spawns
a second, computational one. In an apparent trade-off, the computational process is
lacking in the broad cognitive abilities of its author, but is nonetheless both faster
and more accurate at certain tasks by several orders of magnitude. It would seem that
the programmer uses the programming language and its interpreter as a cognitive
resource, augmenting their own abilities in line with the extended mind hypothesis
(Clark; 2008). We will revisit this issue within a formal framework in §1.5, after

Page:6 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 7

first looking more broadly at how we relate programming to human experience, and
related issues of representation.

1.3 Anthropomorphism and Metaphor in Programming

Metaphor permeates our understanding of programming. Perhaps this is due to the
abstract nature of computer programs, requiring metaphorical constructs ground
programming language in everyday reasoning. Petre and Blackwell (1999) gave
subjects programming tasks, and asked them to introspect upon their imagination
while they worked. These self reports are rich and varied, including exploration of
a landscape of solutions, dealing with interacting creatures, transforming a dance of
symbols, hearing missing code as auditory buzzing, combinatorial graph operations,
munching machines, dynamic mapping and conversation. While we cannot rely on
these introspective reports as authoritative on the inner workings of the mind, the
diversity of response hints at highly personalised creative processes, related to phys-
ical operations in visual or sonic environments. It would seem that a programmer
uses metaphorical constructs defined largely by themselves and not by the com-
puter languages they use. However mechanisms for sharing metaphor within a cul-
ture do exist. Blackwell (2006b) used corpus linguistic techniques on programming
language documentation in order to investigate the conceptual systems of program-
mers, identifying a number of conceptual metaphors listed in Figure 1.4. Rather
than finding metaphors supporting a mechanical, mathematical or logical approach
as you might expect, components were instead described as actors with beliefs and
intentions, being social entities acting as proxies for their developers.

It would seem, then, that programmers understand the structure and operation
of their programs by metaphorical relation to their experience as a human. Indeed
the feedback loop described in §1.2 is by nature anthropomorphic; by embedding
the development of an algorithm in a human creative process, the algorithm itself
becomes a human expression. Dijkstra strongly opposed such approaches:

“I have now encountered programs wanting things, knowing things, expecting things, be-
lieving things, etc., and each time that gave rise to avoidable confusions. The analogy
that underlies this personification is so shallow that it is not only misleading but also
paralyzing.” (Dijkstra; 1988, p. 22)

Dijkstra’s claim is that by focusing on the operation of algorithms, the programmer
submits to a combinatorial explosion of possibilities for how a program might run;
not every case can be covered, and so bugs result. He argues for a strict, declarative
approach to computer science and programming in general, which he views as so
radical that we should not associate it with our daily existence, or else limit its
development and produce bad software.

The alternative view presented here is that metaphors necessarily structure our
understanding of computation. This view is sympathetic to a common assumption
in the field of cognitive linguistics, that our concepts are organised in relation to
each other and to our bodies, through conceptual systems of metaphor (Lakoff and

Page:7 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

8 Alex McLean and Geraint Wiggins

COMPONENTS ARE AGENTS OF ACTION IN A CAUSAL UNIVERSE.
PROGRAMS OPERATE IN HISTORICAL TIME.
PROGRAM STATE CAN BE MEASURED IN QUANTITATIVE TERMS.
COMPONENTS ARE MEMBERS OF A SOCIETY.
COMPONENTS OWN AND TRADE DATA.
COMPONENTS ARE SUBJECT TO LEGAL CONSTRAINTS.
METHOD CALLS ARE SPEECH ACTS.
COMPONENTS HAVE COMMUNICATIVE INTENT.
A COMPONENT HAS BELIEFS AND INTENTIONS.
COMPONENTS OBSERVE AND SEEK INFORMATION IN THE EXECUTION ENVIRONMENT.
COMPONENTS ARE SUBJECT TO MORAL AND AESTHETIC JUDGEMENT.
PROGRAMS OPERATE IN A SPATIAL WORLD WITH CONTAINMENT AND EXTENT.
EXECUTION IS A JOURNEY IN SOME LANDSCAPE.
PROGRAM LOGIC IS A PHYSICAL STRUCTURE, WITH MATERIAL PROPERTIES AND
SUBJECT TO DECAY.
DATA IS A SUBSTANCE THAT FLOWS AND IS STORED.
TECHNICAL RELATIONSHIPS ARE VIOLENT ENCOUNTERS.
PROGRAMS CAN AUTHOR TEXTS.
PROGRAMS CAN CONSTRUCT DISPLAYS.
DATA IS A GENETIC, METABOLIZING LIFEFORM WITH BODY PARTS.
SOFTWARE TASKS AND BEHAVIOUR ARE DELEGATED BY AUTOMATICITY.
SOFTWARE EXISTS IN A CULTURAL/HISTORICAL CONTEXT.
SOFTWARE COMPONENTS ARE SOCIAL PROXIES FOR THEIR AUTHORS.

Fig. 1.4 Conceptual metaphors derived from analysis of Java library documentation by Blackwell
(2006b). Program components are described metaphorically as actors with beliefs and intentions,
rather than mechanical imperative or mathematical declarative models.

Johnson; 1980). Software now permeates Western society, and is required to func-
tion reliably according to human perception of time and environment. Metaphors of
software as human activity are therefore becoming ever more relevant.

1.4 Symbols and Space

We now turn our attention to how the components of the bricolage programming
process shown in Figure 1.3 are represented, in order to ground understanding of
how they may interrelate. Building upon the anthropocentric view taken above, we
propose that in bricolage programming, the human cognitive representation of pro-
grams centres around perception. Perception results in a low-dimensional represen-
tation of sensory input, giving us a somewhat coherent, spatial view of our environ-
ment. By spatial, we do not merely mean “in terms of physical objects”; rather, we
speak in terms of features in the spaces of all possible tastes, sounds, tactile textures
and so on. This scene is built through a process of dimensional reduction from tens
of thousands of chemo-, photo-, mechano- and thermoreceptor signals. Algorithms
on the other hand are represented in discrete symbolic sequences, as is their output,
which must go through some form of digital-to-analogue conversion before being

Page:8 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 9

presented to our sensory apparatus, for example as light from a monitor screen or
sound pressure waves from speakers, triggering a process we call observation. Re-
call the programmer from §1.2, who saw something not represented in the algorithm
or even in its output, but only in their own perception of the output; observation is
itself a creative act.

The remaining component to be dealt with from Figure 1.3 is that of program-
mers’ concepts. A concept is “a mental representation of a class of things” (Murphy;
2002, p. 5). Figure 1.3 shows concepts mediating between spatial perception and
discrete algorithms, leading us to ask: are concepts represented more like spatial ge-
ometry, like percepts, or symbolic language, like algorithms? Our focus on metaphor
leads us to take the former view, that conceptual representation is grounded in per-
ception and the body. This view is taken from Conceptual Metaphor Theory (CMT)
introduced by Lakoff and Johnson (1980), which proposes that concepts are primar-
ily structured by metaphorical relations, the majority of which are orientational, un-
derstood relative to the human body in space or time. In other words, the conceptual
system is grounded in the perceptual system. The expressive power of orientational
metaphors is that it structures concepts not in terms of one another, but in terms of
the orientation of the physical body. These metaphors allow concepts to be related
to one another as part of a broad, largely coherent system.

Returning to Figure 1.4, showing programming metaphors in the Java language,
we find the whole class of orientational metaphors described as a single metaphor
PROGRAMS OPERATE IN A SPATIAL WORLD WITH CONTAINMENT AND EXTENT.
In line with CMT, we suggest this is a major understatement, that orientational
metaphors structure the understanding of the majority of fundamental concepts.
For example, a preliminary examination leads us to hypothesise that orientational
metaphors such as ABSTRACTION IS UP and PROGRESS IS FORWARD would be
consistent with this corpus, but further work is required.

Gärdenfors (2000) formalises orientational metaphor by further proposing that
the semantic meanings of concepts, and the metaphorical relationships between
them are represented as geometrical properties and relationships. Gärdenfors posits
that concepts themselves are represented by geometric regions of low dimensional
spaces, defined by quality dimensions. These dimensions are either mapped directly
from, or structured by metaphorical relation to perceptual qualities. For example
“red” and “blue” are regions in perceptual colour space, and the metaphoric seman-
tics of concepts within the spaces of mood, temperature and importance may be
defined relative to geometric relationships of such colours.

Gärdenforsian conceptual spaces are compelling when applied to concepts re-
lated to bodily perception, emotion and movement, and Forth et al. (2008) report
early success in computational representations of conceptual spaces of musical
rhythm and timbre, through reference to research in music perception. However, it
is difficult to imagine taking a similar approach to computer programs. What would
the quality dimensions of a geometrical space containing all computer programs be?
There is no place to begin to answer this question; computer programs are linguis-
tic in nature, and cannot be coherently mapped to a geometrical space grounded in
perception.

Page:9 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

10 Alex McLean and Geraint Wiggins

For clarity, we turn once again to Gärdenfors (2000), who points out that spatial
representation is not in opposition to linguistic representation; they are distinct but
support one another. This is clear in computing, where hardware exists in our world
of continuous space, but thanks to reliable electronics, conjures up a linguistic world
of discrete computation. Our minds are able to do the same, for example by com-
puting calculations in our head, or encoding concepts into phonetic movements of
the vocal tract or alphabetic symbols on the page. We can think of ourselves as spa-
tial beings able to simulate a linguistic environment to conduct abstract thought and
open channels of communication. On the other hand, a piece of computer software
is a linguistic being able to simulate spatial environments, perhaps to create a game
world or guide robotic movements, both of which may include some kind of model
of human perception.

A related theory lending support to this view is that of Dual Coding, developed
through rigorous empirical research by Paivio (1990). Humans have a capacity to
simultaneously attend to both the discrete codes of language and the analogue codes
of imagery. We are also able to reason by invoking quasi-perceptual states, for ex-
ample by performing mental rotation in shape matching tasks (Shepard and Metzler;
1971). Through studying such behaviour Paivio (1990) concludes that humans have
a dual system of symbolic representation; an analogue system for relating to modes
of perception, and a discrete system for the arbitrary, discrete codes of language.
These systems are distinct but interrelate, with “high imagers” being those with high
integration between their linguistic and quasi-perceptual symbolic systems (Vogel;
2003).

Returning to our theme of programming, the above theories lead us to question
the role of continuous representation in computer language. Computer language op-
erates in the domain of abstraction and communication but in general does not at
base include spatial semantics. Do programmers simply switch off a whole chan-
nel of perception, to focus only on the discrete representation of code? It would
appear not. In fact, spatial layout is an important feature of secondary notation in
all mainstream programming languages (Blackwell and Green; 2002), which gen-
erally allow programmers to add white-space to their code freely with little or no
syntactical meaning. Programmers use this freedom to arrange their code so that ge-
ometrical features may relate its structure at a glance. That programmers need to use
spatial layout as a crutch while composing discrete symbolic sequences is telling; to
the interpreter, a block may be a subsequence between braces, but to an experienced
programmer it is a perceptual gestalt grouped by indentation. From this we assert
that concordant with Dual Coding theory, the linguistic work of programming is
supported by spatial reasoning, with secondary notation helping bridge the divide.

There are few examples of spatial arrangement being part of primary syntax. In
the large majority of mainstream programming languages geometric syntax does
not go beyond one dimensional adjacency, although in the Python and Haskell lan-
guages, statements are grouped according to two dimensional rules of indentation.
Even visual programming languages, such as the Patcher Languages mentioned in
§1.1, generally do not take spatial arrangement into account (execution order in Max

Page:10 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 11

is given by right-left ordering, but the same can be said of ‘non-visual’ programming
languages).

Fig. 1.5 The ReacTable (Jordà et al.; 2005), a tangible interface for live music, presented here as
a programming language environment.

As we noted in §1.1, the study of “Programming Languages for the Arts” is
pushing the boundaries of programming notation, and geometrical syntax is no ex-
ception. There are several compelling examples of geometry used in the syntax of
languages for music, often commercial projects emerging from academic research.
The ReacTable (Jordà et al.; 2005) is a tangible, multi-user interface, where blocks
imprinted with computer readable symbols are placed on a circular display surface
(Figure 1.5). We consider the ReacTable as a programming language environment,
although is not presented as such by its creators. Each symbol represents a sound
synthesis function, with a synthesis graph formed based upon the pairwise prox-
imity of the symbols. Relative proximity and orientation of connected symbols are
used as parameters modifying the operation of synthesis nodes. Figure 1.6 shows a
screenshot of Text, a visual language inspired by the ReacTable and based upon the
pure functional Haskell programming language. In Text, functions and values may
be placed freely on the page, and those with compatible types are automatically
connected together, closest first. Functions are curried, allowing terse composition
of higher order functions. Text could in theory be used for general programming,
but is designed for improvising live music, using an underlying musical pattern li-
brary (McLean and Wiggins; 2010b). A rather different approach to spatial syntax
is taken by Nodal, where distance between symbols represents elapsed time during
interpretation (McCormack and McIlwain; 2011). The result is a control flow graph
where time relationships in musical structure can be easily seen and manipulated as

Page:11 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

12 Alex McLean and Geraint Wiggins

spatial relationships.2 In all of these examples, the graphs may be changed while
they are executed, allowing interactive composition and indeed live improvisation
of the like examined in §1.6.

Fig. 1.6 Text, a visual programming language designed for improvised performance of electronic
dance music. Functions automatically connect, according to their distance and type compatibility.

An important assertion within CMT is that a conceptual system of seman-
tic meaning exists within an individual, and not as direct reference to the world.
Through language, metaphors become established in a culture and shared by its
participants, but this is an effect of individual conceptual systems interacting, and
not individuals inferring and adopting external truths of the world (or of possible
worlds). This would account for the varied range of programming metaphors dis-
cussed in §1.3, as well as the general failure of attempts at designing fixed metaphors
into computer interfaces (Blackwell; 2006c). Each programmer has a different set of
worldly interests and experiences, and so establishes different metaphorical systems
to support their programming activities. However, by building orientational and spa-
tial metaphors into programming notation, such as TIME IS DISTANCE, PROXIMITY
IS CONNECTIVITY and ORIENTATION IS EXTENT, universal bodily relationships
are employed. This results in metaphors that are more readily understood, employ-
ing general cognitive resources to artistic expression.

2 This space/time syntax can also be seen in Al-Jazari mentioned earlier and shown in Figure 1.2.

Page:12 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 13

1.5 Components of creativity

We now have grounds to formally characterise how the creative process operates
in bricolage programming. For this we employ the Creative Systems Framework
(CSF), a high-level formalisation of creativity introduced by Wiggins (2006a,b) and
based upon the work of Boden (2003). Creativity is characterised as a search in a
space of concepts, using the quasi-Platonic idea, common in AI, that there is an
effective duality between exploration of an extant range of items, that conform to
rules, and construction of new items according to those rules, in a context where the
extent of the space is unknown.

Within the CSF, a creative search has three key aspects: the conceptual search
space itself, traversal of the space and evaluation of concepts found in the space.
In other words, creativity requires somewhere to search, a manner of searching,
and a means to judge what you find. However, creative behaviour may make use
of introspection, self-modification and need boundaries to be broken. That is, the
constraints of search space, traversal and evaluation are not fixed, but are examined,
challenged and modified by the creative agent following (and defined by) them. The
CSF supplies tests for particular kinds of aberration from the expected conceptual
space and suggests approaches to addressing them.

Again using the terminology of Gärdenfors (2000), the search spaces of the CSF
are themselves concepts, defining regions in a universal space defined by quality di-
mensions. Thus transformational creativity is a geometrical transformation of these
regions, motivated by a process of searching through and beyond them; crucially,
the search space is not closed. As we will see, this means that a creative agent
may creatively push beyond the boundaries of the search. While acknowledging
that creative search may operate over linguistic search spaces, we focus on geo-
metric spaces grounded in perception. This follows our focus on artistic bricolage
(§1.2), which revolves around perception. For an approach unifying linguistic and
geometric spaces see Forth et al. (2010).

We may now clarify the bricolage programming process introduced in §1.2.1
within the CSF. As shown in Figure 1.7, the search space defines the programmer’s
concept, being their current artistic focus structured by learnt techniques and con-
ventions. The traversal strategy is the process of attempting to generate part of the
concept by encoding it as an algorithm, which is then interpreted by the computer.
Finally, evaluation is a perceptual process in reaction to the output.

In §1.2, we alluded to the extended mind hypothesis (Clark; 2008), claiming that
bricolage programming takes part of the human creative process outside of the mind
and into the computer.3 The above makes clear what we claim is being externalised:
part of the traversal strategy. The programmer’s concept motivates a development of
the traversal strategy, encoded as a computer program, but the programmer does not
necessarily have the cognitive ability to fully evaluate it. That task is taken on by
the interpreter running on a computer system, meaning that traversal encompasses
both encoding by the human and interpretation by the computer.

3 See also Chapter ?? by Bown.

Page:13 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

14 Alex McLean and Geraint Wiggins

Fig. 1.7 The process of ac-
tion and reaction in bricolage
programming from Figure
1.3, showing the three compo-
nents of the Creative Systems
Framework, namely search
space, traversal strategy and
evaluation.

Algorithm

Interpret

Percept

Elaborate

Encode
Concept

Observe

React

Output

Evaluation Traversal

Sear
space

The traversal strategy is structured by the techniques and conventions employed
to convert concepts into operational algorithms. These may include design patterns,
a standardised set of ways of building that have become established around many
classes of programming language. Each design pattern identifies a kind of problem,
and describes a kind of structure as a kind of solution.4

The creative process is constrained by the programmer’s concept of what is a
valid end result. This is shaped by the programmer’s current artistic focus, being
the perceptual qualities they are currently interested in, perhaps congruent with a
cultural theme such as a musical genre or artistic movement. Transformational cre-
ativity can be triggered in the CSF when traversal extends outside the bounds of the
search space. If the discovered conceptual instance is valued, then the search space
may be extended to include it. If however it is not valued, then the traversal strategy
may be modified to avoid similar instances in the future.

Because the traversal strategy of a programmer includes external notation and
computation, they are likely to be less successful in writing software that meets
their preconceptions, or in other words more successful in being surprised by the
results. A creative process that includes external computation will follow less pre-
dictable path as a result. Nonetheless the process has the focus of a search space,
and is guided by value in relation to a rich perceptual framework, and so while un-
predictable, this influence is far from random, being meaningful interplay between
human/computer language and human perceptual experience. The human concepts
and algorithm are continually transformed in respect to one another, and to percep-
tual affect, in creative feedback.

According to our embodied view, not only is perception crucial in evaluating out-
put within bricolage programming, but also in structuring the space in which pro-
grams are conceptualised. Indeed if the embodied view of CMT holds in general,
the same would apply to all creative endeavour. From this we find a message for

4 This structural heuristic approach to problem solving is inspired by work in the field of urban
design (Alexander et al.; 1977).

Page:14 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 15

the field of computational creativity: a prerequisite for an artificial creative agent is
in acquiring computational models of perception sufficient to both evaluate its own
works and structure its conceptual system. Only then will the agent have a basis for
guiding changes to its own conceptual system and generative traversal strategy, able
to modify itself to find artifacts that it was not programmed to find, and place value
judgements on them. Such an agent would need to adapt to human culture in order
to interact with shifting cultural norms, keeping its conceptual system and resul-
tant creative process coherent within that culture. For now however this is wishful
thinking, and we must accept generative computer programs which extend human
creativity, but are not creative agents in their own right.

1.6 Programming in Time

“She is not manipulating the machine by turning knobs or pressing buttons. She is writing
messages to it by spelling out instructions letter by letter. Her painfully slow typing seems
laborious to adults, but she carries on with an absorption that makes it clear that time has
lost its meaning for her.” Sherry Turkle (2005, p. 92), on Robin, aged 4, programming a
computer.

Having investigated the representation and operation of bricolage programming
we now examine how the creative process operates in time. Considering computer
programs as operating in time at all, rather than as entirely abstract logic, is itself
a form of the anthropomorphism examined in §1.3. However from the above quo-
tation it seems that Robin stepped out of any notion of physical time, and into the
algorithm she was composing, entering a timeless state. This could be a state of op-
timum experience, the “flow” investigated by Csikszentmihalyi where “duration of
time is altered; hours pass by in minutes, and minutes can stretch out to seem like
hours” (Csikszentmihalyi; 2008, p. 49). Perhaps in this state a programmer is think-
ing in algorithmic time, attending to control flow as it replays over and over in their
imagination, and not to the world around them. Or perhaps they are not attending to
the passage of time at all, thinking entirely of declarative abstract logic, in a time-
less state of building. In either case, it would seem that the human is entering time
relationships of their software, rather than the opposite, anthropocentric direction
of software entering human time. While programmers can appear detached from
“physical” time, there are ways in which the time-lines of program development
and operation may be united, which we will come to shortly.

Temporal relationships are generally not represented in source code. When a pro-
grammer needs to do so, for example as an experimental psychologist requiring ac-
curate time measurements, or a musician needing accurate synchronisation between
processes, they run into problems of accuracy and latency. With the wide prolif-
eration of interacting embedded systems, this is becoming a broad concern (Lee;
2009). In commodity systems time has been decentralised, abstracted away through
layers of caching, where exact temporal dependencies and intervals between events
are not deemed worthy of general interest. Programmers talk of “processing cycles”

Page:15 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

16 Alex McLean and Geraint Wiggins

as a valuable resource which their processes should conserve, but they generally no
longer have programmatic access to the high frequency oscillations of the central
processing units (now, frequently plural) in their computer. The allocation of time
to processes is organised top-down by an overseeing scheduler, and programmers
must work to achieve what timing guarantees are available. All is not lost however,
realtime kernels are now available for commodity systems, allowing psychologists
(Finney; 2001) and musicians (e.g. via http://jackaudio.org/) to get closer
to physical time. Further, the representation of time semantics in programming is
undergoing active research in a sub-field of computer science known as reactive
programming (Elliott; 2009), with applications emerging in music (McLean and
Wiggins; 2010a).

1.6.1 Interactive programming

Interactive programming allows a programmer to examine an algorithm while it
is interpreted, taking on live changes without restarts. This unites the time flow
of a program with that of its development, using dynamic interpretation or com-
pilation. Interactive programming makes a dynamic creative process of test-while-
implement possible, rather than the conventional implement-compile-test cycle, so
that arrows shown in Figures 1.3 and 1.7 show concurrent influences between com-
ponents rather than time-ordered steps.

Interactive programming not only provides a more efficient creative feedback
loop, but also allows a programmer to connect software development with time
based art. Since 2003 an active group of practitioners and researchers have been
developing new approaches to making computer music and video animation, col-
lectively known as Live coding (Blackwell and Collins; 2005; Ward et al.; 2004;
Collins et al.; 2003; Rohrhuber et al.; 2005). The archetypal live coding perfor-
mance involves programmers writing code on stage, with their screens projected for
an audience, while the code is dynamically interpreted to generate music or video.
Here the process of development is the performance, with the work generated not by
a finished program, but through its journey of development from nothing to complex
algorithm, generating continuously changing musical or visual form along the way.
This is bricolage programming taken to a logical and artistic conclusion.

1.7 Conclusion

What we have discussed provides strong motivation for addressing the concerns of
artist-programmers. These include concerns of workflow, where elapsed time be-
tween source code edits and program output slows the creative process. Concerns
of programming environment are also important, which should be optimised for the
presentation of shorter programs in their entirety to support bricolage programming,

Page:16 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 17

rather than hierarchical views of larger codebases. Perhaps most importantly, we
have seen motivation for the development of new programming languages, pushing
the boundaries to greater support artistic expression.

From the embodied view we have taken, it would seem useful to integrate time
and space further into programming languages. In practice integrating time can
mean on one hand including temporal representations in core language semantics,
and on the other uniting development time with execution time, as we have seen
with interactive programming. Temporal semantics and interactive programming
both already feature strongly in some programming languages for the arts, as we
saw in §1.6, but how about analogous developments in integrating geometric rela-
tionships into the semantics and activity of programming? It would seem the ap-
proaches shown in Nodal, the ReacTable and Text described in §1.1 are showing the
way towards greater integration of computational geometry and perceptual models
into programming language. This is already serving artists well, and could become
a new focus for visual programming language research.

We began with Paul Klee, a painter whose production was limited by his two
hands. The artist-programmer is limited differently to the painter, but shares what
Klee called his limitation of reception, by the “limitations of the perceiving eye”.
This is perhaps a limitation to be expanded but not overcome: celebrated and fully
explored using all we have, including our new computer languages. We have char-
acterised a bricolage approach to artistic programming as an embodied, creative
feedback loop. This places the programmer close to their work, grounding discrete
computation in orientational and temporal metaphors of their human experience.
However the computer interpreter extends the programmer’s abilities beyond their
own imagination, making unexpected results likely, leading the programmer to new
creative possibilities.

Acknowledgements Alex McLean is supported by a Doctoral grant awarded by the UK EPSRC.

References

Alexander, C., Ishikawa, S. and Silverstein, M. (1977). A Pattern Language: Towns, Buildings,
Construction, first edn, Oxford University Press.

Blackwell, A. (2006a). Gender in domestic programming: From bricolage to séances d’essayage,
CHI Workshop on End User Software Engineering.

Blackwell, A. and Collins, N. (2005). The Programming Language as a Musical Instrument, Pro-
ceedings of PPIG05, University of Sussex.

Blackwell, A. F. (2006b). Metaphors we Program By: Space, Action and Society in Java, Proceed-
ings of the Psychology of Programming Interest Group 2006.

Blackwell, A. F. (2006c). The reification of metaphor as a design tool, ACM Trans. Comput.-Hum.
Interact. 13(4): 490–530.

Blackwell, A. and Green, T. (2002). Notational Systems – the Cognitive Dimensions of Notations
framework, Morgan Kaufmann, pp. 103–134.

Boden, M. A. (2003). The Creative Mind: Myths and Mechanisms, 2 edn, Routledge.

Page:17 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

18 Alex McLean and Geraint Wiggins

Brown, P., Gere, C., Lambert, N. and Mason, C. (eds) (2009). White Heat Cold Logic: British
Computer Art 1960-1980 (Leonardo Books), The MIT Press.

Church, A. (1941). The Calculi of Lambda Conversion., Princeton University Press, Princeton, NJ,
USA.

Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension (Philosophy
of Mind Series), OUP USA.

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. (2003). Live coding in laptop performance,
Organised Sound 8(03): 321–330.

Csikszentmihalyi, M. (2008). Flow: the psychology of optimal experience, HarperCollins eBooks.
Dijkstra, E. W. (1988). On the cruelty of really teaching computing science.
Elliott, C. (2009). Push-pull functional reactive programming, Haskell Symposium.
Essinger, J. (2004). Jacquard’s Web: How a Hand-Loom Led to the Birth of the Information Age,

1st edition. edn, Oxford University Press, USA.
Finney, S. A. (2001). Real-time data collection in Linux: A case study, Behavior Research Meth-

ods, Instruments, & Computers 33(2): 167–173.
Forth, J., McLean, A. and Wiggins, G. (2008). Musical Creativity on the Conceptual Level, IJWCC

2008.
Forth, J., Wiggins, G. and McLean, A. (2010). Unifying Conceptual Spaces: Concept Formation

in Musical Creative Systems, Minds and Machines 20(4): 503–532.
Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought, The MIT Press.
Jordà, S., Kaltenbrunner, M., Geiger, G. and Bencina, R. (2005). The reacTable, In Proceedings of

the International Computer Music Conference (ICMC 2005, pp. 579–582.
Klee, P. (1953). Pedagogical sketchbook, Faber and Faber.
Lakoff, G. and Johnson, M. (1980). Metaphors We Live By, first edition edn, University of Chicago

Press.
Lee, E. A. (2009). Computing needs time, Commun. ACM 52(5): 70–79.
Lévi-Strauss, C. (1968). The Savage Mind (Nature of Human Society), University Of Chicago

Press.
Levy, S. (2002). Hackers: Heroes of the Computer Revolution, Penguin Putnam.
McCartney, J. (2002). Rethinking the Computer Music Language: SuperCollider, Computer Music

Journal 26(4): 61–68.
McCormack, J. and McIlwain, P. (2011). Generative composition with nodal, in E. R. Miranda

(ed.), A-Life for Music: Music and Computer Models of Living Systems, Computer Music and
Digital Audio, A-R Editions, Inc., pp. 99–113.

McLean, A., Griffiths, D., Collins, N. and Wiggins, G. (2010). Visualisation of Live Code, Elec-
tronic Visualisation and the Arts London 2010.

McLean, A. and Wiggins, G. (2010a). Petrol: Reactive Pattern Language for Improvised Music,
Proceedings of the International Computer Music Conference.

McLean, A. and Wiggins, G. (2010b). Tidal - Pattern Language for the Live Coding of Music,
Proceedings of the 7th Sound and Music Computing conference.

Murphy, G. L. (2002). The Big Book of Concepts (Bradford Books), The MIT Press.
Paivio, A. (1990). Mental Representations: A Dual Coding Approach (Oxford Psychology Series),

new edition edn, Oxford University Press, USA.
Petre, M. and Blackwell, A. F. (1999). Mental imagery in program design and visual programming,

International Journal of Human-Computer Studies 51: 7–30.
Polgár, T. (2005). Freax, CSW-Verlag.
Puckette, M. (1988). The Patcher, Proceedings of International Computer Music Conference.
Reas, C. and Fry, B. (2007). Processing: A Programming Handbook for Visual Designers and

Artists, The MIT Press.
Rohrhuber, J., de Campo, A. and Wieser, R. (2005). Algorithms Today: Notes On Language

Design for Just In Time Programming, Proceedings of the 2005 International Computer Music
Conference.

Schon, D. A. (1984). The Reflective Practitioner: How Professionals Think In Action, 1 edn, Basic
Books.

Page:18 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

1 Computer Programming in the Creative Arts 19

Shepard, R. N. and Metzler, J. (1971). Mental rotation of three-dimensional objects., Science (New
York, N.Y.) 171(972): 701–703.

Turing, A. M. (1992). Intelligent Machinery. Report, National Physics Laboratory, in D. C. Ince
(ed.), Collected Works of A. M. Turing: Mechanical Intelligence, Elsevier, Amsterdam, pp. 107–
127.

Turkle, S. (2005). The Second Self: Computers and the Human Spirit, Twentieth Anniversary
Edition, 20 anv edn, The MIT Press.

Turkle, S. and Papert, S. (1990). Epistemological Pluralism: Styles and Voices within the Computer
Culture, Signs 16(1): 128–157.

Turkle, S. and Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete,
Journal of Mathematical Behavior 11(1): 3–33.

Vogel, J. (2003). Cerebral lateralization of spatial abilities: A meta-analysis, Brain and Cognition
52(2): 197–204.

Wang, G. and Cook, P. R. (2004). On-the-fly programming: using code as an expressive musi-
cal instrument, Proceedings of the 2004 conference on New interfaces for musical expression,
National University of Singapore, pp. 138–143.

Ward, A., Rohrhuber, J., Olofsson, F., McLean, A., Griffiths, D., Collins, N. and Alexander, A.
(2004). Live Algorithm Programming and a Temporary Organisation for its Promotion, in
O. Goriunova and A. Shulgin (eds), read me — Software Art and Cultures.

Wiggins, G. A. (2006a). A Preliminary Framework for Description, Analysis and Comparison of
Creative Systems, Journal of Knowledge Based Systems .

Wiggins, G. A. (2006b). Searching for Computational Creativity, New Generation Computing
24(3): 209–222.

Page:19 job:ComputersCreativity macro:svmult.cls date/time:2-Aug-2011/14:52

