
L I V E A L G O R I T H M

P R O G R A M M I N G

A N D A T E M P O R A R Y

O R G A N I S AT I O N

F O R I T S

P R O

M O T

I O

N

243

W e can do better than almost.
Live computer music and visual performance can now involve
interactive control of algorithmic processes. In normal practise,
the interface for such activity is determined before the concert.
In a new discipline of live coding or on-the-fly programming the
control structures of the algorithms themselves are malleable at
run-time. Such algorithmic fine detail is most naturally explored
through a textual interpreted programming language. A number of
practitioners are already involved with these possibilities using
a variety of platforms and languages, in a context of both public
exhibition and private exploration.

An international organisation,TOPLAP, has recently been estab-
lished to promote the diffusion of these issues and provide a seal of
quality for the audiogrammers, viders, progisicians and codeduc-
tors exploring the art of live coding. Practitioners provide descrip-
tions of their work in later sections of the paper. For the act of per-
formance, a manifesto, Lubeck 04, presented herein, attempts to
qualify the expertise required in live programming for an accept-
able contribution to this new field.

Introduction
Live coding is the activity of writing (parts of) a program while it
runs. It thus deeply connects algorithmic causality with the per-

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

Why, his hands move so fluidly
that they almost make music.
(Ba.Ch creates a chess program
for Crab, Hofstader, 2000, p.729)

A D R I A N WA R D , J U L I A N R O H R H U B E R ,

F R E D R I K O L O F S S O N , A L E X M C L E A N ,

DAV E G R I F F I T H S , N I C K C O L L I N S ,

A M Y A L E X A N D E R

244

ceived outcome and by deconstructing the idea of the temporal
dichotomy of tool and product it allows code to be brought into
play as an artistic process.The nature of such running generative
algorithms is that they are modified in real-time; as fast as possible
compilation and execution assists the immediacy of application of
this control. Whilst one might alter the data set, it is the modifica-
tion of the instructions and control flow of processes themselves
that contributes the most exciting action of the medium.

Live coding is increasingly demonstrated in the act of programming
under real-time constraints, for an audience, as an artistic enter-
tainment. Any software art may be programmed, but the program
should have demonstrable consequences within the performance
venue. A performance that makes successive stages of the code
construction observable, for example, through the use of an inter-
preted programming language, may be the preferred dramatic
option.Text interfaces and compiler quirks are part of the fun, but
a level of virtuosity in dealing with the problems of code itself,
as well as in the depth of algorithmic beauty, may provide a more
connoisseurial angle on the display.

The Satanic advocate might ask whether a live coder must understand
the consequences of an algorithm change, or whether their curiosi-
ty to make a change is sufficient? A codician might tamper with
Neural Net weights or explore emergent properties. Many algo-
rithms are analytically intractable; many non-linear dynamic
processes twist too swiftly. A continuum of the profundity of
understanding in such actions is accepted. Perhaps the prototype
live coders are improvising mathematicians, changing their proofs
in a public lecture after a sudden revelation, or working privately at
the speed of thought, with guided trail and error, through possible
intuitive routes into a thorny problem.

There are always limits to the abstract representations a human mind
can track and which outcomes predict. In some cases trial and error
becomes necessary and cause and effect are too convoluted to fol-
low. As a thought experiment, imagine changing on-the-fly a meta-
program that was acting as an automated algorithm changer.

code, text

245

This is really just a change to many things at once. Iterate that
process, piling programs acting on programs. Psychological
research would suggest that over eight levels of abstraction are past
the ability of humans to track.

Live coding allows the exploration of abstract algorithm spaces as an
intellectual improvisation. As an intellectual activity it may be col-
laborative. Coding and theorising may be a social act. If there is an
audience, revealing, provoking and challenging them with the bare
bone mathematics can hopefully make them follow along or even
take part in the expedition.

These issues are in some ways independent of the computer, when it
is the appreciation and exploration of algorithm that matters.
Another thought experiment can be envisaged in which a live cod-
ing DJ writes down an instruction list for their set (performed with
iTunes, but real decks would do equally well).They proceed to
HDJ according to this instruction set, but halfway through they
modify the list.The list is on an overhead projector so the audience
can follow the decision making and try to get better access to the
composer’s thought process.

A Motivation: Coding as a Musical Act
There are many comparisons to be made between software and
music. For example, both exist as a set of instructions to be inter-
preted and executed to produce a temporal form. I play this music
I’ve scored, I run this software I’ve hacked together; I breathe life
into my work.

Indeed, some musicians explore their ideas as software processes, often
to the point that a software becomes the essence of the music. At
this point, the musicians may also be thought of as programmers
exploring their code manifested as sound.This does not reduce
their primary role as a musician, but complements it, with unique
perspective on the composition of their music.

Terms such as “generative music” and “processor music” have been
invented and appropriated to describe this new perspective on
composition. Much is made of the alleged properties of so called

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

246 code, text

“generative music” that separate the composer from the resulting
work. Brian Eno likens making generative music to sowing seeds
that are left to grow, and suggests we give up control to our
processes, leaving them to “play in the wind.”

This is only one approach to combining software with music, one
that this paper wishes to counter quite strongly. We advocate the
humanisation of generative music, where code isn’t left alone
to meander through its self-describing soundscape, but is hacked
together, chopped up and moulded to make live music.

And what works for generative music should extend to further time
based algorithmic arts.

An Organisation Supporting Live Coding
The organisation TOPLAP (www.toplap.org), whose acronym has

a number of interpretations, one being the Temporary
Organisation for the Proliferation for Live Algorithm
Programming, has been set up to promote and explore live coding.
TOPLAP was born in a smoky Hamburg bar at 1am on Sunday
15th February 2004. A mailing list and online community has since
grown up, this paper being one outcome of that effort.

TOPLAP does not set out to judge live coding, in that much will not
take place as a public display. But where the world of performance
intrudes, we can encourage some healthy principles of openness
and quality to foster the explorations of this new field. Profundity
of insight into code and representation is to be applauded.The

247

Lubeck04 manifesto below, begun on a Ryanair transit bus from
Hamburg to Lubeck airport, tackles the performance side of live
coding.

The Lubeck04 Manifesto for Live Coding Performance
The act of programming on stage is controversial, especially
since it typically involves the much derided laptop. Both Roger
Dean (Dean 2003) and Andrew Schloss (Schloss 2003) are set
against aspects of laptop performance. Whilst Dean finds the
notion of projecting a laptop screen somehow a cheapening of
music (I expect he holds his eyes closed in every concert so as not
so see conductors, violins, or, ugh, computer performers) Schloss
cautions against the lack of causality and gesture in laptop per-
formance. He makes no reference to McLean’s notion of laptop
projection as essential to confront the former (McLean 2003,
Collins 2003); the latter is an acknowledged physical restriction
of the computer keyboard interface, but sidestepped by the intel-
lectual gestures of live coding.The seventh point in his concluding
list is damning:

“People who perform should be performers. A computer music con-
cert is not an excuse/opportunity for a computer programmer to
finally be on stage. Does his/her presence enhance the perform-
ance or hinder it?” (Schloss 2003, p242)

The only hope is that he be outflanked by the position herein; pro-
gramming becomes performance. We now qualify what constitutes
a good performance.

We the digitally oversigned demand:
• Give us access to the performer’s mind, to the whole human

instrument.
• Obscurantism is dangerous. Show us your screens.
• Programs are instruments that can change themselves
• The program is to be transcended —Language is the way.
• Code should be seen as well as heard, underlying algorithms

viewed as well as their visual outcome.

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

248

• Live coding is not about tools. Algorithms are thoughts.
Chainsaws are tools.That’s why algorithms are sometimes harder
to notice than chainsaws.

We recognise continuums of interaction and profundity, but prefer:
• Insight into algorithms
• The skillful extemporisation of algorithm as an impressive display

of mental dexterity
• No backup (minidisc, DVD, safety net computer)
We acknowledge that:
• It is not necessary for a lay audience to understand the code to

appreciate it, much as it is not necessary to know how to play gui-
tar in order to appreciate watching a guitar performance.

• Live coding may be accompanied by an impressive display of man-
ual dexterity and the glorification of the typing interface.

• Performance involves continuums of interaction, covering perhaps
the scope of controls with respect to the parameter space of the
artwork, or gestural content, particularly directness of expressive
detail. Whilst the traditional haptic rate timing deviations of
expressivity in instrumental music are not approximated in code,
why repeat the past? No doubt the writing of code and expression
of thought will develop its own nuances and customs.

Performances and events closely meeting these manifesto conditions
may apply for TOPLAP approval and seal.

A Historical Perspective
TOPLAP artists are not the first to explore the world of program-
ming as a live activity.The earliest traced performances in comput-
er music have been attributed to the Hub (see Collins, McLean,
Rohrhuber and Ward 2003, Brown and Bischoff 2002), who used
interpreted Forth as an interface to sound processes, passing
parameters amongst the ensemble in further pioneering network
music activity. Programming activity was essential to the Hub’s
workflow, and did take place during live performance, where the
audience were often invited to wander around the computers.

code, text

249

“Constructing and coding were the way we practiced, and were “the
chops” that were required to make the music happen.” (Brown and
Bischoff 2002 Section 2.4 Hub Aesthetics)

“Chats kept track of the progress of the band through this shape, and
were often used to describe the character of the music that result-
ed, providing a running commentary on how the performance was
going. During the New York performance the audience was free to
wander around the band, observing the band’s evaluation of its
own performance.” (Brown and Bischoff 2002 Section 3.2 Text
Based Pieces)

The explicit role of programming under the scrutiny of audience as an
insight into the performer’s mind was not a primary outcome,
however.

Recently brought to our attention by Curtis Roads was a 1985 per-
formance by Ron Kuivila at STEIM in Amsterdam, described in
(Roads 1986).

“I saw Ron Kuivila’s Forth software crash and burn onstage in
Amsterdam in 1985, but not before making some quite interesting
music.The performance consisted of typing.” (Curtis Roads, per-
sonal communication)

Kuivila also used live interpreted FORTH, on an Apple II computer,
without projection.

TOPLAP Field Reports
We note some recent designs and performances that explore live
coding.

Prominent live coding systems have been described in previous papers.
ChucK (Wang and Cook 2003) is a new audio programming lan-
guage which is intended for live use. A prototype performance
took place in New York in November 2003, with double projection
of a duet of live coders (Ge and Perry), and is described in (Wang
and Cook 2004).Two highly developed live coding systems are
revealed in (Collins, McLean, Rohrhuber and Ward 2003).The
slub software of Alex McLean and Ade Ward produces music
from command line antics with Perl scripts and REALbasic live

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

250

coding; slub have performed in public since the start of the mille-
nium. Julian Rohrhuber’s JITLib is an extension set for the
SuperCollider (McCartney 2002) audio programming language,
dedicated to live coding prototyping and performance. Julian’s
own work often uses it in network music, exploratory film sound-
tracks and improvisation where he can react to the setting and
audience and describe events through audio code. Julian was
instrumental in bringing together many live coding practitioners
for the ‘changing grammars’ conference in Hamburg, Feb 12–14
2004, which promoted the genesis of TOPLAP.There are a num-
ber of other SuperCollider users working with live coding meth-
ods due to the easy applicability of this interpreted language to live
coding of audio algorithms. Fabrice Mogini, Alberto de Campo
and Nick Collins (Collins 2003) have all given live coding per-
formances in the last few years.

Further systems under development under the approval of TOPLAP
are now described; whilst early systems were pure audio, healthy
perspectives are also arising in the visual modality and mixed
audiovisual worlds.These descriptions are sometimes edited high-
lights from the TOPLAP mailing list; we enjoy the healthy excite-
ment of such postings.

Alex McLean: feedback.pl
A painter, Paul Klee, moves to make a mark on a canvas.
Immediately after this initial moment the first counter motion
occurs; that of receptivity, as the painter sees what he has painted.
Klee therefore controls whether what he has produced so far is
good.This is the artistic process described by Klee in his excellent
Pedagogical Sketchbook [Klee, 1968].The same process occurs
when an artist edits a computer program.The artist types an algo-
rithm into the computer, the artist considers it in its place and
moves to make the next mark in response.

However, live programming allows us to play with this relationship
somewhat. Let me describe how my live programming environ-
ment, ‘feedback.pl’ works.

code, text

251

The marks that the artist is making in feedback.pl don’t just affect the
artist, but also affect the running code. While the artist considers
the possibilities of a fresh algorithm that they have just typed,
feedback.pl is already executing it.

What’s more, the algorithm running in feedback.pl can edit its source
code. I should explain carefully... While the artist types in a com-
puter program, feedback.pl is running it; that running process may
edit its own source code.Those self-modifications take immediate
effect, changing the running program. And so it goes on.

The running code may also do other things. I use feedback.pl as an
environment to make music. So I write live code in feedback.pl
that makes live music.

And so we have at least three complementary feedback loops.
One loop is that of the artist and their work in progress —
expressions enter the program, the artist observes the effect on
the sourcecode and reacts with further expressions. A second
loop is that between the sourcecode and the running process —
the process reads the sourcecode and carries out instructions
which modify the sourcecode, then reads in its modifications
and follows those.

The third, outer feedback loop appears when the program creates
external output.The program might generate some sounds that
the artist interprets as music, reacts to by changing the sourcecode,
immediately changes the process which in turn alters the generat-
ed sound, which the artist reacts to once more.

When I’m performing before a live audience, then there is a fourth
feedback loop, encompassing the audience who are interpreting
the music in their own individual ways, making their own artistic
expressions by dancing to it, which affects the choices I make, in
turn changing the music.

If the programmer is to share the continuous artistic process of a
painter, their performative movements must be must be reactive,
they must be live. Code must be interpreted by the computer as
soon as it can be written, and the results reacted to as soon as they
can be experienced.The feedback loops must be complete.

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

252

Amy Alexander:The Thingee
I threw together a rough quick funny Thingee that’s a livecode edi-
tor and VJ instrument —both at the same time. You type the code
on the screen, and it actually executes the code as you type it, but
all the visuals are made of the onscreen code too, though I’m
experimenting with including the ability to pull in the whole desk-
top sometimes as well. It generously abuses the concept of feed-
back; in this case, the whole thing’s a feedback loop anyway.This is
somehow reassuring because the concept of video feedback in dig-
ital VJ tools always disturbs me a little —since computers have no
optics they can’t “see” their own output as did the original video
feedback with cameras. I lie awake nights worrying about that.

Rough preliminary screengrabs:

code, text

253

Well it may look a bit pretty in these screenshots, but it usually seems
quite a bit goofier when you see it move. And of course, since
you’re seeing it respond to the code as I type it in, it has that live-
code appeal that you can’t see in the stills. I think I’ve got things
worked out now so it doesn’t crash when I type illegal code in.
However, there’s still plenty of room for me to make a fool of
myself in performance, as I occasionally type things by accident
that make the code-boxes go whizzing around out of my control
and then I have to try to “catch” one to make it stop. (I am working
on a “panic button” implementation —but of course it’s much
more entertaining if I at least *try* to catch them... :-))

Some more details: there are currently six code-boxes (editors) on
the screen, plus two buffers which can take images of the app or
the whole screen for feedback purposes. You can type a one line
command or a many line snippet in each box, assuming enough
space — the box will expand, up to a point. Of course, you could
type some livecode to make the font smaller, and that would
give you more room. The idle loop will execute the code in any
or all of the code-boxes that end with a semicolon at a given
moment; the code takes effect as soon as you type the semi-
colon. Thinking of performative speech and performative code
— it’s kind of neat (I think) to see the *semicolon* actually per-
form what it does! (and also will be a funny inside joke to peo-
ple who know that Lingo doesn’t use semicolons like all those
“difficult” languages. :-)).

As to the question of whether all code in a livecode performance
should be written in “longhand” (the original programming lan-
guage) or whether it’s OK to write custom shortcuts — I’m work-
ing it out as I go along. :-) Sometimes it makes sense to type it all
out, but for certain stuff, it’s just too much in live performance —
so shortcuts become essential. The discerning screengrab viewer
may note the beginnings of a custom shortcut grammar begin-
ning, based on my personal tendency toward verbification: there-
fore, the following commands exist in ThingeeLanguage: smalli-
fy, rotify, skewify, colorify, bigify and biggify (because I cannot

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

254

seem to spell that one consistently). There are some other com-
mands too that don’t match that convention —I’ll probably go
back and “ify” them too.

In making the shortcuts, of course I’m essentially writing a “language”
one level higher/more abstract than the one I was writing in
(Lingo.) Which is itself written on top of something else, which is
written on top of something else, eventually going down to the 1’s
and 0’s of machine language and then to the processor. If I kept
going to successively higher level “languages”—I could eventually
get down to pre-scripted one-keypress actions, which is more tra-
ditional user interaction for performative software. So this illus-
trates —for me anyway —that the line between programmer and
user is really a continuum, not a line in the sand.The user is in
some ways programming, but the programmer is also very much
a user, influenced in what she does by the language in which she
writes. Control is a sliding scale, which can sometimes slide in
unexpected directions.

Of course the devil is in the details and I should really find some time
to make The Thingee a bit less rough than it is, and actually get
good enough at performing it to make sure it’s entertaining to
watch and not just a concept piece. Entertainifying with software
is very important to me.

In keeping with my new “foot-operated software” crusade, I may also
add an option where you can do the live coding with your feet
on a DDR [Dance Dance Revolution] pad. (This would have
the added benefit of bringing the world one step closer to the
elusive goal of dancing about architecture.) I think I’ve actually
figured out a warped hack for doing that, but I’d really have
to be much less tired than I am now before I could attempt such
a feet <sic>.

Dave Griffiths: fluxus
Fluxus is an OpenGL based render engine which reads audio
input and makes realtime animations.The “scenes” you build are
entirely described by scripts that are written in realtime.

code, text

255

The actual script interface is in a separate window to the renderer cur-
rently. It resembles the maya mel script editor, in that you write
code and highlight it to execute it in fragments.That way you can
build up a palette of function calls and bits of code and execute
them with the mouse and a keypress.The whole time you’re doing
this, the renderer is doing its thing, so it’s usable live.

If no code is selected, hitting F5 will execute the whole script. Also you
can set a bit of code that’s called each frame —if you make this a func-
tion call, you can modify the function, highlight and execute the
scheme function definition again, and it will update instantly.There is
also a simple GUI that just consists of buttons that execute code snip-
pets (again, usually function calls, but it can be whatever you want).
You can build this simple GUI live, or load it from prebuilt scripts.

In practice, script errors don’t really break the flow of the visuals. No
crashes. Well, that’s the idea anyway —I keep everything really
simple, there have been a few issues with the physics library (which
is superb in other respects: http://www.ode.org/) but I’ve got them
mostly under control now.

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

Peter Halley

256

The lower area of the scripting window spews script errors out.
With scheme it’s mostly mismatching (((()))) so I added parenthe-
sis highlighting in the editor which makes it miles easier. If there is
a syntax error in a script the interpreter aborts the code there, and
it’s quite easy to sort out.The only thing that seems to go wrong
is if the code generates a mismatching (push) or (pop) trashing the
renderer’s state stack —but this often results in visually interesting
;) results anyway...

Fluxus is very much designed for live use (and live coding) —and
I would love to do so at some point.

One day I’d like to make the code editor a quake style console thingy,
so the code is visible to all, on top of the 3D. Figuring out the
interface for this is a bit more tricky, but I guess it could work
in a similar fashion.

Project homepage: http://www.pawfal.org/Software/fluxus/

Fredrik Olofsson: redFrik
I did a disastrous gig exactly a year ago in Malmö in the south of
Sweden using my now defunct SuperCollider2 redFrik livecod-
ing framework. It was not true livecoding but more of a syntax
interface for routing sounds through effects, changing tempo,
filling patterns, starting and stopping processes with different
fading times and so on. I thought typing live both looked cool
and could engage the audience in the process. Adding to
this I had, running simultaneously in the background, a Max/
Nato.0+55 videopatch that grabbed a small area of the screen.
So whatever syntax was visible in this area got passed through
two or three video effects, scaled up to fullscreen and sent to a
beamer. These trashing and pixelating effects were in turn con-
trolled by parameters in the music like tempo and kickdrum pat-
tern. Hereby the code I typed was visually transformed and
rearranged in sync with the sound.

It was a big event and I screwed up totally. I did not rehearse properly
due to my redesign of the framework up until the last minute.
And during the set my brain went into chimpanzee mode as so

code, text

257

often when performing. I could not keep all things in my head
controlling video and music simultaneously so both stagnated for
long periods of time while I tried to think clearly. Add to that that
the projector was horrible and my video effects possibly a little too
brutal so the mess was totally unreadable. Me still shivers when
thinking about it. So I figured I needed to start rehearsing livecod-
ing on a daily basis, as any instrument, and also fully automate cer-
tain things (like the video part) and that is where I am still at.

I only used this system for two concerts.The main reason was that it
was notoriously dangerous to do live-coding in SuperCollider2.
Slightest typo and the sound would choke and you were forced to
reload your system. As that would take a few long and embarrass-
ingly silent seconds, you tended to play safe and not change the
code a lot. It promoted copy&paste of known bug free syntax.

My framework did have some nice features though. One of them was
that commands that for example filled a pattern with 60% random
hits, could be undone with the revert n steps command.

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

The black videoscreen in the right upper corner is

the projected output and corresponds to what

is visible in the left hand ‘cmd’ window

258

o.send(“/punkBassdrum/patAmp”, 16, 0.6);//fill with new random values
o.send(“/punkBassdrum/patAmp”, \revert, 1); //go back to the previ-

ous if a poor sound
or a similar example filling a 16 slot pattern with random pitches

between 40 and 80 Hertz:
o.send(“/punkBassdrum/patPitch”, 16, 40, 80);
With revert I could jump back to good sounding patterns. I just need-

ed to remember which indexes were good sounding -sigh.
o.send(“/punkBassdrum/patPitch”, \revert, 1);
There’s no cure for the Halting problem but having safe positions, in

this case good sounding settings, to retreat back to as you branch
out I think is vital. Like a mountain climber at regular intervals
drilling for firm stops. And these presets couldn’t be prepared in
advance —they’re made up as you go.

My current setup builds around Julian Rohrhuber’s JITLib for
SuperCollider Server and is more a set of tools helping me to
quickly find snippets of code and sound definitions —all built to
support live coding in JITLib. I am still not confident enough to
play with this in public; I feel I need more practice.

Julian Rohrhuber, Volko Kamensky:
Interactive Programming for Real Sound Synthesis

The film scenes in “Alles was wir haben” (8-mm, 22 min) are a
chain of slow 360¡ moves filmed in a small town of northern
Germany, a town, so we hear the representative of the
Homeland Museum say, that has a long history, a long history
of fires that have been destroying the place over and over again.
The museum, according to him, is a place dedicated to the iden-
tity of the historical roots, without which the inhabitants would
have no true existence. The Homeland Museum was rebuilt
several times after bring destroyed by fire. The problem the film
maker Volko Kamensky had was that atmospheric sound
recordings create the impression of an outward world that is as
it is, not made, not constructed — the film as a documentation
of a factual town.

code, text

259

As he wanted to create the impression of a constructed, isolated, artifi-
cial reality, just as constructed as the idea of history, of reality in
general, we had the idea to use interactive programming to syn-
thesize synthetic sound imitations of all actions that are expected
to produce sound. We used JITLib to slowly approach a sound
portrait of what we imagined to be the proper sound for each
scene. Without any nature study it was the talking about the
sound and the possibility to write the program on the fly that
allowed us to find real sound simulations, caricatures sometimes,
that were not a result of an exact physical model, but, similar to
a painting, of a perceptual and conversational process. The simple
fact, that we did not have to stop the program to modify it,
allowed us to develop an awareness of differences which were
essential for this work. There were some unexpected findings
which are sometimes ridiculously simple, and also the visibility
of the code formed a kind of second causality that made the artifi-
ciality of our documentary construction even more perceivable.
In the film, the code is not present in a visual form. Nevertheless
I hope the process of its creation can be felt and read as part of
the world this film projects.

This description may serve as an example of live programming that
does not happen in a classic performance situation, but as part of
an everyday culture of programming. Although much of this activ-
ity is never seen in public, it is an undercurrent of algorithmic
music practice which I hope to have shed light on by this example.

ward, rohrhuber, olofsson, mclean, griffiths, collins, alexander

I would say that doing live programming alone, I am the audience and
programmer in one, which is not a trivial unity, but a quite hetero-
geneous one, in which the language, my expectations, my percep-
tions, errors and my poetic and/or programming style play their
own roles.The situation with one or more persons as audience, or,
not to forget, as coperformers, is an interesting extension of this
situation, but it is by no means primary.There are many specific
problems of this larger interaction, such as readablility, perform-
ance style etc. which are well worth discussing, but I would not
constrain interactive programming to this specific public situation.

For the film “Alles was wir haben” this was the situation that was
responsible for how the whole idea worked and it was what I did
while working on JITLib. I could describe the compositional work
I did more in detail, but maybe this is already a general description
of a type of situation which I find very interesting in itself.

In my experience it allows a very spontaneous interaction with the
music in combination with talking about the music.This means
I can, while playing, talk with others about what they hear, think,
etc. or about other topics even and as the sound keeps playing I can
react to these conversations by changing the code.Then I am not
in the situation of the one who is looked at (especially as it is not
my body movements which are so interesting, hmhm..) but the
code / sound relation is in the center of attention. Of course, one
step further, in networked live coding there is a flow of code
between all participants which can, to different degrees, interact
and contribute. Nobody knows who does what anyways.

JITLib: http://swiki.hfbk-hamburg.de:8888/MusicTechnology/566

Conclusions
Here’s looking forward to the day that MC XVIII,

Terminalator X and Scope Codey Code are
household names. Big up arrow the

code massive. We know
where you

code
.

261

Thanks to: Curtis Roads, Ron Kuivila,
John Bischoff and Alberto de Campo

Literature
Chris Brown and John Bischoff. 2002. “Indigenous to the Net: Early

Network Music Bands in the San Francisco Bay Area”.
http://crossfade.walkerart.org/

Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. 2003.
“Live Coding Techniques for Laptop Performance”. Organised Sound,
8(3):321–30.

Nick Collins. 2003. “Generative Music and Laptop Performance”.
Contemporary Music Review, 22(4):67–79.

Roger Dean. 2003. Hyperimprovisation: Computer-Interactive Sound

Improvisation. A-R Editions Inc., Middleton, Wisconsin.
Douglas Hofstader. 2000. Godel Escher Bach: An Eternal Golden Braid.

(20th anniv. ed.) Penguin.
James McCartney. 2002. “Rethinking the Computer Music Language:

SuperCollider”. Computer Music Journal, 26(4), 2002.
Alex McLean. 2003. “ANGRY —/usr/bin/bash as a Performance Tool.”

In S. Albert. (ed.) Cream 12. Available online from
http://twenteenthcentury.com/saul/cream12.htm

Curtis Roads. 1986. “The Second STEIM Symposium on Interactive
Composition in Live Electronic Music”. Computer Music Journal,

10(2): 44–50.
Julian Rohrhuber and Alberto de Campo. 2004. “Uncertainty and Waiting

in Computer Music Networks”. ICMC 2004. (forthcoming)
Andrew Schloss. 2003. “Using Contemporary Technology in Live

Performance; the Dilemma of the Performer”. Journal of New Music

Research, 32(3): 239–42
Ge Wang and Perry R. Cook. 2003. “ChucK: A Concurrent, On-the-fly

Audio Programming Language”. In Proceedings of the International
Computer Music Conference, Singapore.

Ge Wang and Perry R. Cook. 2004. “On-the-fly Programming: Using Code
as an Expressive Musical Instrument”. In New Interfaces for Musical
Expression (NIME), Hamamatsu, Japan.

