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Abstract

We consider the artist-programmer, who creates work through its description as source code.

e artist-programmer grandstands computer language, giving unique vantage over human-

computer interaction in a creative context. We focus on the human in this relationship, noting

that humans use an amalgam of language and gesture to express themselves. Accordingly we

expose the deep relationship between computer languages and continuous expression, exam-

ining how these realms may support one another, and how the artist-programmer may fully

engage with both.

Our argument takes us up through layers of representation, starting with symbols, then

words, language and notation, to consider the role that these representations may play in hu-

man creativity. We form a cross-disciplinary perspective from psychology, computer science,

linguistics, human-computer interaction, computational creativity, music technology and the

arts.

We develop and demonstrate the potential of this view to inform arts practice, through

the practical introduction of soware prototypes, artworks, programming languages and im-

provised performances. In particular, we introduce works which demonstrate the role of per-

ception in symbolic semantics, embed the representation of time in programming language,

include visuospatial arrangement in syntax, and embed the activity of programming in the

improvisation and experience of art.
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C 1

Introduction

e history of computation is embedded in the history of humankind. Computation did not

arrive with the machine, it is something that humans do. We did not invent computers, we

invented machines to help us compute. Indeed, before the arrival of mechanical computers,

“computer” was a job title for a human employed to carry out calculations. In principle, these

workers could compute anything that modern digital computers can, given enough pencils,

paper and time.

e textile industry saw the first programmable machine to reach wide use: the head of

the Jacquard loom, a technology still used today. Long strips of card are fed into the Jacquard

head, which reads paerns punched into the card to guide intricate paerning of weaves. e

Jacquard head does not itself compute, but was much admired by Charles Babbage, inspir-

ing work on his mechanical analytical engine (Essinger, 2004), the first conception of a pro-

grammable universal computer. Although Babbage did not succeed in building the analytical

engine, his design includes a similar card input mechanism to the Jacquard head, but with

punched paerns describing abstract calculations rather than textile weaves. While the in-

dustrial revolution had troubling consequences, it is somewhat comforting to note this shared

heritage of computer source code and cloth, which contemporary artists still reflect upon in

their work (Carpenter and Laccei, 2006).

is early computer technology was later met with theoretical work in mathematics, such

as Church’s lambda calculus (Church, 1941) and the Turing machine (Turing, 1992, orig. 1947),

which seeded the new field of computer science. Computer programmers may be exposed to

these theoretical roots through their education, having great impact on their cra. As it is

now practised however, computer programming is far from a pure discipline, with influences

including linguistics, engineering and architecture, as well as mathematics. Digital computers

now underpin the operation of business, military, academic and governing institutions, with

impacts across human activity. ese diverse backgrounds bring different approaches to pro-
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C 1: I

gramming, a great challenge for computer programming education.

As abstract machines, computers are multi-purpose, and are used in many ways towards

many different ends. Judging by the contents of newstand magazines dedicated to them, the

computer arts are most oen framed as the use of soware applications as design tools. Here

soware is produced by soware houses, and bought and used by creative professionals. is

situation has its merits, but is a diversion from our theme: we are interested in artists who

write programs, not in those who only use programs wrien by others. Neither are we greatly

concerned with the notion of computer programs as autonomous creative agents, although

we will touch on this within broader discussion of programmer creativity (ch. 6). Instead we

are interested in the practice of artists who get directly involved with computer languages as

environments in which to create. ey are end-user programmers, in that they create soware

not for others to use as tools, but as a means to realise their own work. We refer to such people

as artist-programmers.

1.1 Artist-Programmers

e use of the term artist-programmer could be seen as over defensive. Alone, the word pro-

grammer is oen used to imply a technician, tending a computing machine, or realising a de-

signer’s dream. We could bemore assertive, and use the word programmer to establish a similar

context effect to that which the word painter enjoys in the fine arts. But for the present thesis

we keep the arts context explicit, while confronting the singular identity of the programmer as

artist.

1.1.1 Computer art

We situate artist-programmmers within the computer arts, and so inherit important context

from this field. Wewill first examine the role of industrial and military institutions in computer

arts, before moving on to the issue of authorship and autonomy in the following section.

In Great Britain, computer art became established following the Cybernetic Serendipity ex-

hibition shown in the Institute of Contemporary Arts, curated by Jasia Reichardt in 1968. On the

whole this exhibition was well received, both in terms of reviews and the number and diversity

of visitors. However as Usselmann (2003) notes, while the exhibition was successful in bringing

some of the possibilities of computer art to public consciousness, it was significantly compro-

mised. Despite the turbulence of the late sixties, there was no political dimension apparent

in the exhibition, which Usselmann aributes to the inclusion of sponsoring corporations in

the exhibition itself. He argues that this exhibition cast computer art into a form which later
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proved to be well suited for interactive museum exhibits, but has contributed lile to critical

debate around technology. As Usselmann notes, visitors were compelled by the ICA to “lose

their fear of computers”, whereas dissenting voices would advise otherwise, even then.

e model described by Usselmann persists far beyond Cybernetic Serendipity, for exam-

ple the Decode exhibition at the Victoria and Albert museum in 2009 was sponsored by SAP

AG, who commissioned the Bit.Code artwork greeting visitors to the exhibition. In their press

release, SAP noted that “Bit.Code is themed around the concept of clarity, which also reflects

SAP’s focus on transparency of data in business, and of how people process and use digital

information.” In a 40 year echo of Cybernetic Serendipity, the artworks were used to promote

humanising aspects of technology, with the artists tacitly taking on the political stance of their

sponsor.

Despite such compromises in the public presentation of computer art, there have always

been computer artists who engage closely with the sociopolitical context around their work.

A few years aer Cybernetic Serendipity, Nake (1971) published his essay “ere should be no

computer art” in response to the political compromises he then saw as implicit in computer

art. Nake also took aim beyond computer art, giving a leist perspective decrying the wider

model of art dealer and art gallery, where art is sold for the aesthetic pleasure of the ruling

elite. Taking the perspective of Usselmann (2003) alone, we might consider computer art as

compromised, but Nake suggests that it is the whole art world that is compromised, and that

the new computational media should establish alternative practices.

In a second 40 year echo, this time of Nake’s essay, Oliver et al. (2011) focus on the social

rather than artistic role of the critical engineer, quoting from their manifesto:

e Critical Engineer notes that wrien code expands into social and psycho-
logical realms, regulating behaviour between people and the machines they inter-
act with. By understanding this, the Critical Engineer seeks to reconstruct user-
constraints and social action through means of digital excavation.

Oliver et al. (2011) are established artists, and exemplify the strong theme of activism

present in contemporary digital arts. ey highlight the unique opportunity for engaging

with political themes where the boundary between digital arts and activism is blurred. is

boundary has been explored by artists from the outset, with their work well charted by Neural

magazine (http://neural.it).

Perhaps this dichotomy between politically engaged and disinterested art could reflect two

distinct views of the relationship between programmer and soware. is brings us to the

subject of authorship in computer art.
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1.1.2 Generative vs Soware art

e different approaches to digital art described above can be understood in terms of a di-

chotomy drawn between generative art and soware art. Arns (2004) describes generative art

as work which approaches use of technology as a black box, with focus on end results. In con-

trast, she describes soware art as focusing on technology and technological culture, where

the soware itself holds meaning.

Some argue that comparing generative and soware art in this way is a category error. e

most commonly referenced definition of generative art, and the one addressed by Arns (2004),

is provided by Philip Galanter:

Generative art refers to any art practicewhere the artist uses a system, such as a
set of natural language rules, a computer program, a machine, or other procedural
invention, which is set into motion with some degree of autonomy contributing to
or resulting in a completed work of art. (Galanter, 2003, p.4)

Galanter (2003) states that his definition of generative art does not say anything about

why an artwork might be made or anything about its content, as a definition of soware art

might. It is instead concerned only with a high level aspect of how art is made. He argues

that the questioning theme of soware art runs orthogonal to the definition of generative art,

and therefore that the two do not bear comparison. However, central to Galanter’s definition

is the issue of autonomy: “Generative art must be well defined and self-contained enough to

operate autonomously.” (Galanter, 2003, p.4). Contrary to Galanter’s assertion, the requirement

of autonomy offers a strong constraint to the why of generative art; its operation must be

considered separable from the programmer, who is in the business of creating activity external

to their own influence. Soware art by contrast admits views of soware as an extension of

the human, where the computer provides language which allows human expression to reach

further.

According to Galanter’s definition, we view the generative artist as emphasising distance

between themselves and their work, and the soware artist as embedding the activity of their

soware in their own actions. We position the artist-programmer towards the laer, directly

engaging and interacting with their code as an integral aspect of their work. In the case of

generative art, authorship becomes a fundamental question, who or what produces the art: is

it the programmer or their autonomous process? In the case of soware art, this question need

not arise, as the process may just be viewed as part of the human artist’s activity.

From the above we can see evidence of a divide throughout the history of computer art,

between focus on aesthetic output, and focus on the processes of soware, including its role in
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society. ese are not mutually exclusive, and indeed Nake advocates both in balance. How-

ever, there is a tendency for computer artists and their audiences to focus on processes as dis-

embodied, autonomous activity (§4.1). By exposing the activity of programming, perhaps we

can adjust the balance towards focus on human interaction rather than autonomous processes.

1.1.3 Discussion

In the following chapters, sociopolitical context and critical frameworks around computer art

are not our focus. Instead we turn our aention inward towards the intimate relationship

between artist-programmers and their systems of language, understanding programming as

a human interaction. e artist is considered for their role as a visionary, in exploring and

extending their human experience. We consider technological support in terms of extending

their vision through processes of perception and reflection in bricolage creativity. In particular,

we expand upon the remarkable notion of programming language, to consider the role of these

languages in the activity of creative art.

1.2 Programming Languages for the Arts

e ‘tools’ that artist-programmers use to make their work are formal, artificial languages.

ese languages are artificial in that they are constructed by individuals, rather than emerging

from a wider cultural process as with natural languages. e word artificial is problematic in

implying fakery, but as we will argue in §4.1, computer languages are only artificial in the sense

that a desk fan produces artificial wind – the air still moves.

ere are many thousands of programming languages, but they tend to fall within a small

number of functional, structural and object oriented programming paradigms largely devel-

oped between the 1950s and 1970s. e most widely used programming languages1 across

institutions include Java, C, Basic and Python. ese are all general purpose languages, with a

core definition abstract from any particular task, albeit with add-on libraries which may target

a particular problem domain. In using general purpose programming languages, artists must

build their work using technology ostensibly designed for the general case, but in practice de-

signed for the expression of discrete, logical structures, in an abstract medium ungrounded in

human experience.

In the present thesis we question the extent to which contemporary, general purpose pro-

gramming language environments are suitable for Artist-Programmers. We will argue for new

approaches to the design of programming languages for the arts, with human cognition and

1An index of programming language popularity is maintained at http://www.tiobe.com/.
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perception as primarymotivating factors. In particular, language environments that relate both

discrete and continuous representations, that consider visuospatial and temporal experience in

the design of their notations, and that support soware development as creative activity.

1.3 Aims

e work described by the present thesis is conducted towards two primary aims.

• To characterise human-computer interaction as a means for the improvisation of music

and art, from the viewpoint of cognitive psychology, with strong focus on the human

role in computer programming.

• To develop and demonstrate the potential of this theoretical understanding to enrich arts

practice, through free/open source soware applications and programming languages,

installation art, live coding performances and workshops.

1.4 Structure

e following five chapters provide the core of the present thesis, where each successive chap-

ter builds upon the chapter before, each time broadening in scope. Firstly Symbols (ch. 2)

will provide a representational basis for the thesis, exploring units of representation and their

role in the production and experience of computer art. e following chapter Words (ch. 3)

considers the composition of symbols into words, and the expressive role of words in speech,

music and computer programs. Next we consider the composition of words into the structures

of Language (ch. 4), in particular the expression of paern and meaning in natural languages,

computer languages, and in music. Zooming out once more we view Notation (ch. 5), looking

at the perceptual and temporal practicalities of how programmers may write programs. Finally

our discussion will take in the wider context of Creativity (ch. 6), the role of programming in a

creative exploration, with particular focus on musical improvisation.

Overall, the focus will be not on digital representations within computation, and not on

analogue expression either, but on the interactions between the two. Computers give us priv-

ileged access to the digital realm, but we must not lose sight of the analogue, because humans

experience and interact with the world as an amalgam of both.

is journey will be led by practice-based research, and research-based practice, in mutual

support. Each of the following five chapters will introduce works informing and informed by

the thesis, as listed in the above preface.
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1.5 Original contributions to knowledge

e key contributions of this thesis are:

1. e development of vocable synthesis, a system for the terse description of a particular

conception of timbre through the articulation of phonetic symbols informed by music

tradition (§3.5).

2. e representation of music paerns in live music performance, as functions of events

over time, demonstrated by Tidal (§4.5).

3. An approach to visuospatial syntax in pure functional language, based on relative dis-

tance and type-compatibility, demonstrated by Texture (§5.6).

4. A characterisation of the creative processes of the artist-programmer in relation to es-

tablished theoretical frameworks (§6.3 – 6.5).
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Symbols

Our discussion begins in earnest with symbols, starting with discrete units of digital represen-

tation. For our purposes, a symbol is simply something that is used to represent, or signify,

something else. At their most basic level, computers use only two discrete symbols, 1 and

0, which in combination represent other symbols, such as the leers of an alphabet. For the

present discussion, there is not a great deal to say about discrete symbols in isolation. How-

ever we are not only interested in digital computers, but also the artists who work with them.

Accordingly our focus through this chapter will be on comparing the internal symbol systems

of humans with those of computers, looking for correspondences and differences upon which

to build the higher order concerns of later chapters.

While discrete computational representations are fully observable and comparatively well

understood, neuroscience is some way from providing a clear picture of the representations

underlying human thought. e pervasive cognitivist approach aempts to address this by

postulating a central role for discrete computation in human cognition, likening the logical

operation of electronic hardware to that of the carbon wetware of our brains. We will build

an alternative view based upon Dual Code theory, which admits a role of discrete symbols in

cognition, but places greater emphasis on analogue symbols. is will provide a base from

which we later consider the role of human and computer symbol systems in the practice of

computer programming.

2.1 Situating symbols

In taking a human oriented view of computer programming, we seek to understand the rela-

tionship between digital symbols and the analogue world in which they are notated. We have

already noted that a computer was once a job title (§1.1), since then however, computation has

largely been mechanised, and perhaps to some extent dehumanised. e job of ‘computer’ is
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now taken by electronic, digital machines, bringing increased speed and accuracy by several

orders. However the human has not been entirely factored out of the process; on the contrary

the role of writing program(me)s for computers to follow has developed into a rather unique

profession, where programmers oen work in large teams writing huge tracts of code defin-

ing the underlying logic of modern institutions. Computer languages have been designed for

parsimony by human programmers to support this work, allowing new approaches to human

artistic expression as we will see in chapter 5. However, the underlying functional representa-

tion, of operations over sequences of discrete symbols, remains the same as when computation

was a wholly human task.

In Babbage’s Difference Engine (§1.1), 1s and 0s are represented by the punched/not

punched states of paper cards. In modern computers, these binary states are provided by the

binary on/off (or high/low) states of analogue electronic components. All discrete data may

be represented within binary states, for example the true/false values of Boolean logic, or the

ones and zeros of binary (base two) numbers. Such numbers may represent the instruction

set of the computer processor, allowing a symbolic sequence to be interpreted as a sequence

of operations over itself. is is the fundamental view of a computer program given to us by

Turing (1992, orig. 1948) – a sequence of symbols, read by a machine, which interprets them as

operations over that same sequence of symbols.

A discrete symbol system may represent aspects of the continuous world using a process

called analogue to digital conversion. For example, sampling and storing sound input from a

microphone is a process of averaging sound pressure over a given sample period, and approx-

imating the average as a discrete number. e conversion cannot be perfect, as its accuracy

depends on the granularity of the sample period and sample value. For example a period of

one sample per 44100th of a second, with a range of 16 bits (65536 possible values) is used on

standard Compact Disc recordings, and is taken to be in the same order as the distinguishing

limits of human perception. We experience such a recording through inverse digital to analogue

conversion, by sending the sampled data as stepped pulses of electricity to an electromagnet,

moving the membrane in a loudspeaker to push sound pressure waves across the room, to be

felt out by our ears.

Having digitally represented a sound signal, we may wish to perform some computation

over it. In order to do so, some aspect of the continuous world it was sampled from is oen

modelled or simulated. For example to store digital sound efficiently, psychoacoustic models

are oen used, so that information beyond the ability of hearing is discarded. Likewise, to

apply a reverb effect, a physical room may be modelled. It is apt to extend this concept of

simulation to the function of computer hardware itself. If soware can simulate a continuous
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analogue digital
real integer

continuous discrete
image language
imagen logogen
smooth striated

amorphous pulsating
neumatic structural
plane grid

articulation sequence
nonmetric metric
modal amodal

grounded ungrounded
specific general

Table 2.1: analogue and digital - analogous antonyms.

domain in a discrete domain, then the job of hardware is to simulate a discrete domain in

the continuous domain of analogue electronics. We construct computers to simulate a digital

world, within which wemay then construct a simulation of an analogue world. is simulation

within simulation takes a recursive, fractal form, which may continue to arbitrary depth.

e paern of analogue and digital representations supporting one another also runs across

human experience. Byway of illustration, table 2.1 shows pairs of related antonyms used across

the arts and sciences. e antonyms smooth and striated bring to mind the smoothness of a

pebble and the striated lines across weathered rock, one perceived as a continuous texture

and the other as a series of discrete boundaries. But a stone can be simultaneously smooth

and striated, perhaps marked by layers of limestone but washed smooth over millennia. e

interdependence of the striated and smooth is described by Deleuze and Guaari (1987, p. 480)

as the relation between points and lines; “in the case of the striated, the line is between two

points, while in the smooth, the point is between two lines.” is is a necessarily circular

definition, as we understand one in relation to another.

e distinction and relationship between the analogue and digital carries through to our

perception of time, including within perception of music. Boulez (1990) relates striated time

with pulsating, regular rhythm, and smooth time with an amorphous, irregular flow. In dis-

cussing the notation of music, he contrasts neumatic and structural representations, where

neumes are analogue lines, in contrast to the discrete structures of staff notation. Boulez tends

towards the use of discrete symbols in notation, considering them more general and accurate,

but of course discrete symbols are only more accurate if you wish to notate a pulsating rather
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than amorphous temporal structure in the first place.1 eWestern Classical tradition focuses

on the former, but amorphous time is nonetheless present as an important aspect of dynamic

performance, even when not notated. ere are however strategies for notating amorphous

time in discrete computer language, exemplified by the constraint-based time seing used in

the Bol Processor language and inspired by Indian Classical music (Bel, 2001).

e distinctions in table 2.1 between articulation and sequence, and modal and amodal are

different aspects of the distinction between grounded and ungrounded. Our environment, and

our bodies moving through it, are by nature analogue, but our experience of our environment

is both analogue and discrete. We may perceive a movement as a smooth articulation, while

simultaneously abstracting it into a discrete sequence of events, by segmenting it at perceived

points of discontinuity. Where we abstract it, we evoke a representation that is to an extent

amodal, freed from the qualities of a particular mode or sense. However ‘ungrounded’ is per-

haps too strong a term; just because we name a hue as red, it does not mean that we have lost

all connection with perception; we have simply gone from a particular experience in colour

space, to a discrete value that symbolises a region of possible experiences in colour space. We

will expand on perceptual and conceptual spaces later in this chapter (§2.2.5).

In summary then, discrete and analogue domains are distinct, but hosted within one an-

other. ey also interconnect, supporting and enriching one another. is is of great impor-

tance to the programming interface between humans and computers, profoundly so when we

consider how the analogue/digital interconnection extends into the mind of the human pro-

grammer.

2.2 Symbols in cognition

From a computer science perspective, digital symbol systems are shown to be remarkably ele-

gant and with enormous practical use, so it is unsurprising that they are oen used as a descrip-

tive model for the basis of complex phenomena, such as in biology and the cognitive sciences.

Wolfram (2002) shows that it is surprisingly likely for general computation to emerge from

what would otherwise seem to be trivial rule systems. In particular, his exploration of one

dimensional cellular automata led to the discovery of Rule 110. is rule is one of the family

where a cell’s state is based only on its preceding state and that of its two immediate neigh-

bours. It has been proved that despite this simplicity, Rule 110 is a universal computer in that

it can carry out all the operations of the Turing machine, and therefore any other digital com-

puter (Turing, 1992, orig. 1948). Wolfram takes his observation that computation falls out of

1Accuracy need not be the goal when notating amorphous structures however. e use of discrete symbols to
denote classes of amorphous structure is of course possible, and is oen the most satisfactory choice.
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such trivial interactions as evidence that the workings of nature are computational. We are in-

terested in a more specific hypothesis than Wolfram; are digital symbols the representational

basis of cognition? As computation arises from the simplest of rule sets, we certainly cannot

discount it on the basis of Occam’s razor.

Great works on the Language of ought by Fodor (1980) and Pylyshyn (2007) do indeed

point towards a discrete representational basis for cognition. Cognition is described by these

thinkers as the subconscious workings within an innate language oen dubbedmentalese. is

is not a natural language as we speak it, but an internal, universal language structuring subcon-

scious thought. is presumed language is represented using discrete symbols, with cognition

characterised as a process of computational operations over those symbols. Such computational

accounts have strong traction across the cognitive sciences, and also support understanding in

computer science; we understand the syntax of computer languages with reference to Chom-

skian transformational grammar (§4.1).

We return however to the notion of digital supported by analogue, and analogue by digital.

To focus solely on discrete computation is in denial of its essential interplay with analogue

movement and shape. In comparison with humans, digital computers appear to lead a rather

impoverished existence in terms of engagement with their analogue environment. Could this

difference be due to differing symbolic foundations? ere is a line of thought which allows us

to admit computational accounts of themind, but in addition consider a second, complementary

system of representation. is second system is mental imagery; an analogue symbol system

grounded in perception.

2.2.1 Mental imagery

When presented with certain kinds of problems, a quasi-perceptualmental image may be con-

sciously manipulated to solve a task. We can examine these subjective experiences through

objective experiment, for example Shepard and Metzler (1971) identified that when matching

rotated objects, subject reaction times have a strong, linear correlation with relative degree

of rotation. is suggests that imagery is being rotated in the mind. It would appear that

these quasi-perceptual states are an analogue system of symbolic representation, used here in

cognitive problem solving.

e image in mental imagery is not specific to vision, but a broad term related to any

quasi-perceptual state. For example the use of prosodic intonation in speech is paralinguistic,

not entirely notated in wrien text, yet symbolising meaningful content. Indeed the meaning

of a spoken text can be twisted, perhaps negated with sarcasm, through subtle paralinguistic

phrasing. Furthermore, intonation is not just a concern in communication with others, the
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phenomenon of inner spee while reading silently is understood to be a function supporting

workingmemory, providing analogue, prosodic cues useful in comprehending text (Rayner and

Pollatsek, 1994, p. 216).

Mental images then, are analogue symbols underlying visuospatial cognition. An image

symbolises an object, using properties mapped directly from perception. For mental rotation

tasks, the symbolmay itself be rotated, as it shares essential geometric featureswith the object it

symbolises. Some higher order tasks, such as the analysis of complex symmetries, may however

be beyond the capabilities of mental imagery. For such tasks we may abstract properties of

imagery to create a formal language, by which we mean a system of discrete symbols governed

by grammatical rules. In the case of mental rotation, we identify group theory as a linguistic

counterpart, developed to gain mathematical understanding of symmetries (du Sautoy, 2008).

Group theory allows us to extend our understanding of symmetry with discrete logic, but does

so in relation to the mental images we experience.

Empirical understanding of the psychology of analogue and discrete symbols is provided

by Paivio (1990) through hisDual Coding theory. His contention is not that there are two codes,

but rather that there is a hierarchy of codes, which branch at the top into discrete linguistic

codes and continuous perceptual codes, which Paivio names logogens and imagens respectively.

is split is shown in their concurrent processing; humans are able to comprehend language

while simultaneously aending to imagery. Continuing with our earlier example of phrasing

in speech, humans find it easy to simultaneously process and integrate prosodic and linguistic

information, but rather more difficult to simultaneously read text and listen to speech. e

explanation offered by Dual Coding theory is that there are distinct, yet integrated symbol

systems for imagery and language. is theory sits well against the background of digital and

analogue interdependence we noted in §2.1.

Neuropsychology provides support for Dual Coding through research into the fundamental

brain structure of the two distinct hemispheres. Very broadly speaking, the le hemisphere is

specialised for language, and the right for visuospatial tasks (Martin, 2006, pp. 128-129). We

must be careful however not to over-simplify this relationship: the more closely it is examined,

the less clear it gets. For example, from a meta-analysis of cerebral lateralisation of spatial

abilities (Vogel, 2003) we see there is a strong sex difference in lateralisation of spatial tasks,

where female subjects tend to show no hemisphere dominance and males tend to exhibit strong

right hemisphere dominance. e same meta-analysis finds subjects classed as ‘high imagers’

also show no hemisphere dominance in visuospatial tasks, suggesting that high imagers are

not those with a dominant ‘visual’ right hemisphere, but rather with high integration between

both hemispheres. is laer finding has statistical significance, but is based on few studies
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and so cannot be considered robust. However while it stands, it supports the view that the

usefulness of mental imagery comes from integration between discrete and analogue codes.

2.2.2 Mental Imagery and Programming

Before we go any further, we should address Dual Coding theory to our overall theme. It

may seem that computer programming is an overwhelmingly linguistic task in a wholly dis-

crete domain, but if we focus on the programmer rather than the computer, we find this is

not the case. Programmers may deal with formal, discrete and textual language, but they sup-

port and structure their work in a variety of ways external to computer language itself. For

example diagrammatic representations of code structure are widespread in the teaching and

practice of soware development, such as those standardised in the Structured Systems Analy-

sis and Design Method (SSADM) and Unified Modelling Language (UML). ese are highly

formalised languages, but use spatial arrangement and connecting lines to present the struc-

ture of a program in a visual manner. Further, the structure of programs is oen introduced in

programming textbooks using visual metaphor, for example as interconnected roads (Griffiths

and Barry, 2009, pp. 13–21) . We assert then that despite the discrete nature of computation,

programmers oen use mental imagery to support their work.

Petre and Blackwell (1999) look for, and find reports of mental imagery during programming

tasks. ey conducted verbal interviews with ten expert programmers, while they were in the

process of solving programming tasks, prompting them to explain what they were ‘seeing’ in

visual or auditory terms.2 We highlight and comment on a few reports from these interviews:

… no place holders, no pictures, no representation … just the notion, the sym-
bol entities, semantic entities and the linguistic token … atomic notions. ey just
‘are’ (Petre and Blackwell, 1999, p. 17)

We contend that this is not a report of mental imagery as Petre and Blackwell (1999) imply.

is is imaginative use of language, rather than modality-specific quasi-perceptual states.

… it moves in my head … like dancing symbols … I can see the strings [of
symbols] assemble and transform, like luminous characters suspended behind my
eyelids … (Petre and Blackwell, 1999, p. 14)

is is again a report featuring discrete symbols, but augmented with visual imagery. is

appears to be simultaneous activation of both language and imagery, in line with Dual Coding

theory.

2To counter known problems with interview protocols, the study was also complemented and to an extent
confirmed by a second study, based on an undirected questionnaire of 227 programmers of the LABView visual
programming environment.
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It buzzes … there are things I know by the sounds, by the textures of sound or
the loudness … it’s like I hear the glitches, or I hear the bits that aren’t worked out
yet … (Petre and Blackwell, 1999, p. 15)

is is an intriguing example of a reported sonic image, again highlighting that mental

imagery is modality specific, but not necessarily of the visual sense. Indeed the previous quote

could be interpreted as simultaneously having both kinaesthetic and visual features. Petre

and Blackwell (1999) report that all ten experts reported sound as an element in their imagery,

although not in general as a typical element. It is worth noting however that subjects were

specifically probed for sonic imagery, which may have influenced the programmers’ mental

imagery and reports.

It’s like driving across a desert looking for a well. What you actually have is
good solutions distributed across this desert like small deep wells and your opti-
mizer trundling along looking for them… (Petre and Blackwell, 1999, p. 17)

is image appears to be visual-specific although could in addition be interpreted in a ki-

naesthetic sense. at the programmer reports imagining a three-dimensional problem space

is of relevance to the theory of Conceptual Spaces, which we will examine later in §2.2.5.

Again, it is wise to be cautious of introspective reports. Introspection is a subject of re-

search in its own right, with one theory being that introspections are nothing other than re-

constructed, ‘dramatised’ perceptions (Lyons, 1986). Nonetheless this should not discourage us

from treating mental imagery seriously as a system for symbolic reference, and these reports

give us cautious vantage over the cognitive processes of computer programming, towards un-

derstanding how programmers may use mental imagery to support their work.

2.2.3 Dual Coding in Source Code

At base, the source code for a computer program is a one dimensional sequence of discrete

symbols, ready for interpretation by a digital computer. How then could this relate to the

Dual Code in human cognition, when we assert in the previous section that programmers

employ mental imagery in their work? In answer we find that despite the discrete underlying

representation, imagery is present both in the perception and organisation of source code.

In the Psychology of Programming field, a discipline bridging Psychology and Human-

Computer Interaction, it is widely understood that there are notational features of source code

besides formal discrete syntax, and further that these aspects are vitally important to human

understanding of programs. Such features are known as secondary notation, which includes

spatial layout, comments, colour highlighting and variable names. Secondary notation, and

27



C 2: S

its place within the Cognitive Dimensions of Notations framework will be further expanded

upon in §5.1, but for now we focus upon the use of spatial layout in code, with respect to

mental imagery. Consider the following code fragment wrien in the C programming language

(Kernighan and Ritchie, 1988):

if (condition == true) {
display("Welcome.");
beep();

}

All spaces in the above example could be discarded, giving this:

if(condition==true){display("Welcome.");beep();}

As far as a C language compiler is concerned, these code fragments are equivalent, as all

whitespace is discarded during tokenisation, an early stage of computer language parsing. For a

human however, the former version of the code is much easier to comprehend, and for a much

bigger program, the laer form would be close to impossible to understand on sight alone.

e computer ‘sees’ a one dimensional string of symbols, parsed into the higher order data

structure of a syntax tree. Humans however are able to perceive and navigate the fragments

and wholes of a code structure in a manner analogous to a visual Euler diagram. By way of

illustration, our code becomes even more difficult to read if we replace characters to remove

the visual prompts of containment given by the symmetry of matching brackets:

if$condition==true@ˆdisplay$"Welcome."@;beep$@;&

From this we argue that while both humans and computers understand programs as discrete

symbols, humans use secondary notation to augment this representation with visual imagery.

As such, source code is an amalgam of two symbol systems, one of which is discarded in the

computational parsing process.

Programming languages with particularly visual notations are known as Visual Program-

ming Languages. Programming has a reputation for being rather difficult to teach and learn

(e.g. Lister et al., 2004), and so a recurring theme in language design is finding forms of notation

that are more ‘natural’ or ‘intuitive’. A particular hope is that Visual Programming will lead to

languages grasped easily by end users with lile or no training. Early enthusiasm has however

not led to wide success, on the whole VPL has only taken hold for certain target domains, for

example LABView in engineering and Patcher languages (§5.3.1) in audio/visual digital signal
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processing. e lack of success of general purpose Visual Programming suggests that rela-

tionships between discrete symbols and mental imagery are by nature particular to the task at

hand. We should look then not for ways of adding ‘artificial’ visual metaphor to programming

as has been unsuccessful in HCI in general (Blackwell, 2006e), but for ways of supporting a

programmer’s own system of imagery, integrated with the text of source code. We will revisit

and expand upon this point in our view of the notation of programs in §5.3.

We view source code then as supporting both language and imagery. Use of discrete sym-

bols expressed within grammar rules are linguistic3, but are arranged to allow the support of

visuospatial cognition in understanding and writing programs.

2.2.4 Language and Situated Simulation

Language and Situated Simulation (LASS) theory is a recent development of Dual Coding the-

ory introduced by Barsalou et al. (2008). LASS adds empirical support broadly in agreement

with Dual Coding, but with different detail and a strong change of emphasis. Whereas Paivio

(1990) deals with imagens and logogens even handedly, Barsalou et al. place far greater em-

phasis on imagery, which they refer to as the simulation system, reflecting its active role in

cognition. According to LASS, the linguistic system is superficial, acting as lile more than a

control mechanism for the simulation system, which is responsible for deep conceptual struc-

ture grounded in experience.

Simulations in LASS are described as perceptual symbols, but this does not imply conscious

awareness of their use. Indeed in a break from Dual Coding theory, Barsalou (1999, §2.1.1)

asserts that perceptual symbols are a neural representation with only limited correlates in

consciousness. is proposal is similar to mentalese, in that it is an internal representation

underlying subconscious cognition. e difference is that perceptual symbols are analogue

and highly modal, being grounded in sensory-motor neural systems, whereas the notion of

mentalese is as discrete and amodal.

e programmers’ reports from research reviewed in §2.2.2 were the result of probes for

imagery in consciousness while programming, in keeping with the focus on conscious states by

Paivio (1990). However we share the view of LASS, that analogue representations extend be-

yond the confines of consciousness and aention, to structure the bulk of unconscious thought.

erefore if anything, these reported experiences of mental imagery are only the tip of the

iceberg.
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Table 2.2: Levels of representation according to the theory of Conceptual Spaces (Gärdenfors, 2000), aligned
with terms from Dual Coding theory (Paivio, 1990)

Experience Gärdenfors Paivio Structure
Language Symbolic Logogens Discrete symbols
Perception Conceptual Imagens Low dimensional geometry
Sensation Sub-conceptual – High dimensional neural nets

2.2.5 Conceptual Spaces

We have discussed perception with respect to analogue symbols at length, but how does this

relate to concepts? In a major review of the field of concept theory, Murphy (2002, p. 5) defines

the term concept as “a mental representation of a class of things”. So concepts allow us to

structure our experiences through generalisation, but how is this done? e predominant view

is that perception and cognition are independent functions of the brain, but an alternative view

holds that functions of perception and concepts are integrated, relying upon shared neural

resources.

How then could concepts, abstractions from the world, be structured in the same way as

perception? Firstly it is important to recognise that perception is itself not a straightforward

reflection of the world, rather a low-dimensional representation of high-dimensional sensory

input, giving us a somewhat coherent, spatial view of our environment. By spatial, we do not

only mean in terms of physical objects or visual perception, but rather in terms of features in

the analogue spaces of all possible tastes, sounds, tactile textures and so on. is scene is built

through a process of dimension reduction from tens of thousands of chemo-, photo-, mechano-

and thermoreceptor signals. Gärdenfors (2000) proposes that this process of dimension reduc-

tion is behind the construction of Conceptual Spaces. Moreover, he takes this as the primary

model of conceptual representation, including that of higher-level concepts somewhat abstract

from perception. at is, Conceptual Spaces are grounded in the cognitive resources of mental

imagery, but are repurposed to represent conceptual relationships in geometric spaces.

e theory of Conceptual Spaces has great explanatory power in resolving conflict in

the field of artificial intelligence (AI) between proponents of the high dimensional, statisti-

cal graphs of artificial neural networks (ANNs) and the discrete symbols of good old-fashioned

artificial intelligence (GOFAI). ANNs represent concepts through trained networks of connec-

tions between cells, and GOFAI through the discrete constructs of language. In other words,

ANNs work in the realm of sensation, and GOFAI in the realm of computation. Gärdenfors

seeks to unite these approaches by identifying a level of representation that mediates between

3See §4.1 for discussion of the relationship between computer and natural language.
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them: the low dimensional, geometric realm of the conceptual level.

Table 2.2 illustrates how the three levels of Conceptual Space theory align with the two

channels of Dual Coding. Note some discrepancies in terminology; Gärdenfors refers to lin-

guistic representation as symbolic whereas we use the term discrete symbolic to distinguish

from analogue symbols in Dual Coding theory. Note also that Gärdenfors describes ANNs

as sub-conceptual in place of the more generally used terms non- or sub-symbolic, to properly

situate them beneath the geometry of the conceptual layer.

Conceptual Space theory has some agreement with LASS, in that conceptual representa-

tion is considered to be largely outside the grasp of conscious introspection. Although these

theories use different terms and have different emphases, they agree that the primary form of

conceptual representation is within spaces, rather than within the syntax of the discrete sym-

bolic layer. However whereas LASS focuses on simulations of physical objects, movements

and interactions, Conceptual Space theory focuses more on the geometric structure of mental

spaces.

Conceptual spaces are structured by similarity; concepts that are closer together are more

alike. Furthermore, the dimensions of conceptual spaces are aligned with particular conceptual

qualities. is is most easily explained with the example of colour space, where more similar

colours are closer, within the quality dimensions of hue, chromaticism and brightness. As

already alluded to in §2.1, the concept red is not a point in colour space, but rather a convex

region, althoughwemay pinpoint a prototypical red as the centroid, or perhapsmore holistically

as the Voronoi generator (Okabe et al., 2000) of its region. e significance of convexity is clear

if one considers that for any two hues of red, all the hues along the path between them will

also be red. Red as a property is a concept in its own right, but can also form part of a more

complex cross-domain concept, such as red ball.

e example of colour is straightforward, but it is rather harder to apply the theory to

concepts without clear correlates to perceptual spaces in consciousness. However the theory

of Conceptual Spaces makes the bold claim that the same processes of dimension reduction

and spatial representation are applied to the majority of concepts. Despite the lack of subjec-

tive conscious experience, we can hope to objectively identify the dimensions of higher order

concepts through psychological experiment, such as those based on multi-dimensional scal-

ing (MDS). In classic MDS experiments, human subjects are asked to grade pairs of stimuli by

similarity, with their judgements interpreted as distance measurements, and then used to re-

construct the conceptual space evoked by the stimuli. We will appraise MDS approaches in the

context of musical timbre in §3.3.1. We may also construct conceptual spaces based on estab-

lished theory: for example Forth et al. (2010) identify dimensions of musical metre based upon
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music theory.

e theory of Conceptual Spaces is particularly useful for our present discussion in provid-

ing an account of how linguistic and spatial representations may interact in cognition. Rather

than placing the entire burden of higher-order representation on discrete, linguistic structure,

it instead places emphasis on metaphor, both for relating spaces together and for grounding

higher order concepts in embodied, perceptual spaces. Conceptual domains are low dimen-

sional, in general having from one to three dimensions, in common with mental imagery and

human perception in general. us, they may be explored and mapped through spatial reason-

ing, as if they were physical spaces. is includes relating features of two spaces together, in

other words drawing metaphorical relations between conceptual domains.

2.2.6 Metaphor

Metaphor is oen considered to be a form of poetic wordplay, a window dressing on lan-

guage. In introducing their Conceptual Metaphor theory, Lakoff and Johnson (1980) argue on

the contrary that metaphor is of central importance to language. Conceptual Metaphor the-

ory is a defining contribution to the field of cognitive linguistics, and places metaphor in the

role of structuring concepts relative to one another within a coherent system of meaning. For

example, Lakoff and Johnson claim that “Well, that boosted my spirits!” is a linguistic phrase

structured by the underlying conceptual metaphor   4. A single conceptual metaphor

may be expressed through many linguistic phrases, for example “I am depressed”, “I am feeling

down” and “My spirits sank” are instantiations of the same    metaphor.

Lakoff and Johnson (1980) divide conceptual metaphors into two types; structural

metaphors such as    (e.g. “He is living on borrowed time”) and  

 (e.g. “His claims are indefensible”), and orientational metaphors such as 

  (e.g. “He is under hypnosis”) and the aforementioned   . Structural metaphors

structure one concept in terms of an other, while orientational metaphors structure a whole

system of concepts relative to fundamental directional and spatial relationships. Lakoff and

Johnston assert that the majority of conceptual metaphors are orientational, coherent within

a large system of metaphors (Lakoff and Johnson, 1980, p. 17). Orientational metaphors are

organised relative to the body, oen with physical motivation, for example    relates

to the erect posture of a happy person versus drooping posture of a depressed person.

Gärdenfors (2000) builds the notion of orientational conceptual metaphors into his the-

ory of conceptual spaces (§2.2.5), asserting, like Lakoff and Johnston, that they form the pri-

4Conceptual metaphors are by convention denoted with small block capitals, to differentiate them from the
linguistic metaphorical phrases which refer to them.
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mary structure of a human conceptual system. Orientational metaphors ground Conceptual

Metaphor theory, and therefore the theory of Conceptual Spaces, in human physical and cul-

tural experience. Gärdenfors proposes that these metaphors, and the geometric spaces they

relate together, are the basis of semantics. We will return to this subject in discussion of music

and language in §4.2.

2.3 Anthropomorphism and Metaphor in Programming

Metaphor appears to permeate our understanding of programming, as evident in the varied

reports of mental imagery in programming tasks (§2.2.2). Perhaps this is due to the abstract na-

ture of computer language syntax, requiring metaphorical constructs to ground programming

language in everyday reasoning. Blackwell (2006d) used techniques from corpus linguistics

on programming language documentation in order to investigate the conceptual systems of

programmers, identifying a number of conceptual metaphors listed in Table 2.3. Rather than

finding metaphors supporting a mechanical, mathematical or logical approach as you might

expect, components were instead described as actors with beliefs and intentions, being social

entities acting as proxies for their developers.

Blackwell (2006d) classifies orientational metaphors into the metaphors P 

        , along with the related metaphor

of movement in spaces, E      . ese metaphors are

reported to occur regularly, and reflecting on Conceptual Metaphor theory, we would expect

orientational metaphors to provide the primary structure of programming concepts. Perhaps

these metaphors could be broken down and related in a coherent, spatial system of metaphors

such as A  U and P  F. A preliminary examination of the

corpus indicates that this may be feasible, however further work is required.

It would seem then that programmers understand the structure and operation of their pro-

grams by metaphorical relation to their experience as a human. e notion of including a com-

puter in a creative process (§6.3) is by nature anthropomorphic; by embedding the development

of an algorithm in a human creative process, the algorithm itself becomes a human expression.

However, Dijkstra strongly opposed such anthropomorphic approaches in computer science:

“I have now encountered programs wanting things, knowing things, expecting
things, believing things, etc., and each time that gave rise to avoidable confusions.
e analogy that underlies this personification is so shallow that it is not only
misleading but also paralyzing.” (Dijkstra, 1988, p. 22)

Dijkstra’s claim is that by focusing on the operation of algorithms, the programmer submits

to a combinatorial explosion of possibilities for how a programmight run; not every case can be
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C        .
P    .
P       .
C     .
C    .
C     .
M    .
C   .
A     .
C        .
C       .
P         .
E      .
P     ,    
  .
D        .
T    .
P   .
P   .
D   ,     .
S       .
S    / .
S       .

Table 2.3: Conceptual metaphors derived from analysis of Java library documentation by Blawell (2006d).
Program components are described metaphorically as actors with beliefs and intentions, rather than me-
anical imperative or mathematical declarative models.
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covered, so programmer errors prevail. He argues for a strict, declarative approach to computer

science and programming in general. Dijkstra views computer programming as such a radical

activity that we should not associate it with our daily existence, or else limit its development

and produce bad soware.

e alternative view presented here is thatmetaphor necessarily structures our understand-

ing of computation, as it provides the basic structure of our conceptual system (§2.2.6). So-

ware now permeates Western society, and is required to function reliably according to human

perception of time and environment. Metaphors of soware as human activity are therefore

becoming ever more relevant.

2.4 Synaesthesia

Synaesthesia is a condition whereby modes of perception are cross-activated, where activa-

tion in one modality stimulates experiences in a second modality. A classic example is of the

colour→taste synaesthete, who experiences a particular taste whenever they see a particular

colour. Such activations are uni-directional – a colour→taste synaesthete will generally not

also be a taste→colour synaesthete. Synaesthetic experience differs from that of conceptual

metaphor, in that for a colour→taste synaesthete, red may literally taste of earwax, as opposed

to a temperature-colour metaphor aligning the spatial dimensions of redness with warmth, by

linguistic reference to orientational metaphor.

Historically synaesthesia has not been taken particularly seriously by psychologists, dis-

missed as an insignificant function of memory, metaphor or illicit drug use (Ramachandran

and Hubbard, 2001b, p. 4). Over the last decade however a number of experiments have con-

firmed that synaesthesia is a real phenomenon, showing for example that number→colour

synaesthetes perform beer than controls at certain identification tasks, aided by perceptual

‘pop-out’ provided by their condition (Ramachandran and Hubbard, 2001a). is clear experi-

mental support for synaesthesia as a medical condition emboldened Ramachandran and Hub-

bard (2001b) to speculate on a role for synaesthesia in the evolution of language, connecting

vocal articulations and sounds with concepts, and providing a neural basis for metaphor. In the

same paper, a causal link is claimed for the high incidence of synaesthesia reported in artists,

where synaesthetes are more able to make creative metaphorical connections. ese claims

are tempered by a review by Ward et al. (2008), showing that evidence surrounding artists and

synaesthesia is unreliable, with the additional observation that the condition is automatic and

inflexible, whereas creative metaphor requires divergent thinking of a qualitatively different

nature. However the automatic cross-activation of synaesthetes is at least a metaphor for the
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optional cross-domain metaphors drawn by artists, a meta-metaphor perhaps.

While theword synaesthesia is generally reserved for abnormal phenomena, there aremany

cross-modal ‘illusionary’ experiences that are experienced by the majority of the population.

Sound symbolism does not sit well with contemporary linguistic theory, but certain effects

are undeniable. In his treatise on Gestalt Psychology, Kohler (1930) notes that subjects readily

associate spiked and loopy doodles with the nonsense words takete and maluma respectively,

an observation repeated in formal experiment by Ramachandran and Hubbard (2001b) with

the words kiki and bouba. Another illusion is where a single flash of light, when accompanied

by a double sonic click, is perceived as a double flash of light, a phenomenon confirmed by

fMRI evidence (Zhang and Chen, 2006). A third example is the McGurk-McDonald effect (§3.1),

which demonstrates the influence of lip reading on auditory perception. ese strong illusions

provide ground where artists may play with the senses of their audience.

2.5 Artistic synaesthesia?

In the arts, synaesthesia is frequently alluded to where a work crosses multiple media. is is

not intended to be an automatic process as with clinical synaesthesia, but the extension of an

artistic theme across modalities, in order to create a rich experience. At times this may seem

a mundane aspiration dressed in the clothes of psychological disorder. It is aer all normal to

be able to both see and hear an action in perceptual unity; modes of perception are by nature

integrated. Interest comes however where technology allowsmodalities to be related in a novel

manner.

e phrase algorithmic synaesthesia is coined by Dean et al. (2006) to describe artistic at-

tempts to connect vision and sound (or more specifically, film and music) using digital com-

puters. e word algorithm is used rather loosely, to indicate any use of computers to connect

modalities, even if this only amounts to sharing of data between outputs; artistic license is

applied to both terms of the algorithmic-synaesthetic juncture.

Dean et al. (2006) report several interesting approaches to cross-modal integration in per-

formance. However we treat with scepticism their claim that the addition of a computer nec-

essarily brings mixed media into a new realm. ey state that their new digital ‘algorithmic

synaesthesia’ is more precise than past analogue efforts, but it is not clear why; if we are con-

cerned with art that plays with analogue perception, then surely an analogue approach would

notionally be more precise. Instead we see computational developments as a continuation of

an ever-present tendency for artists to look for new correspondences between perceptual do-

mains, through both analogue and digital means.
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e use of mixed media in the arts is not new, and technology has been employed for

centuries in finding novel ways to connect the senses. For example the inventor Mary Hallock-

Greenewalt developed a colour organ (as in, a keyboard instrument to ‘play’ colour projections)

in a bid to realise her conception of Nourathar, an artform based on fluctuating transpositions

of brightness and hue, with a scoring system to unite it with musical staff notation (Greenewalt,

1946). Many colour organists, Hallock-Greenewalt included, have presumed their colour organs

to be novel, however experiments in this area have been a longstanding theme before and since.

Light shows and video displays have become an integral part of the live music stage, from the

psychedelic light shows of the 1960s to contemporary live generative visual art. e laer is

exemplified by United Visual Artists (UVA), who began by creating stage visuals to accompany

and react to the live music of Massive Aack in 2003. UVA have since brought their work to

national galleries in the form of interactive installation art. e artistic focus of both the work

of Hallock-Greenewalt and UVA is the fusing of modes into an whole, audio-visual experience.

Hallock-Greenewalt invented analogue electric components to support her work, and UVA

workwith digital computation, but the artist JohnWhitney is a case of an artist who has worked

through both analogue and digital technology. Whitney produced experimental films from the

1950s, first using hand drawn animation, then analogue computers and in later years digital

computers as they became available (Youngblood, 1970, pp. 207–228). ere is lile discontinu-

ity between his works as he progresses from analogue to digital methods; all are explorations

of form through geometry. e biggest difference is in the amount of time taken to produce

the films, a decade for his first hand drawn film, but much less for his later works. e depth

of his first digitally produced film Arabesque (1975) is breathtaking, the influence of his earlier

analogue approaches still showing in leading the viewer’s perception to an experience that is

both abstract and coherent. is continuity is shown too in the development of programming

languages for music; in particular Miller Puckee has said he thinks of his Patcher languages

(§5.3.1) as more like analogue synthesisers than programming languages (Lewis, 1993). We will

have much more to say about analogue representation in the notation of computer programs

in chapter 5.

Digital computers too oen lead artists into a trap of applying digital transformations to

data without consideration of the analogue source and destination of the data, ultimately lead-

ing to output that human perception cannot decode. While this is not always the case, analogue

methods tend towards straightforward mapping between two quality dimensions in a straight-

forward, perceptually salient manner. Digital methods on the other hand can too easily result

in transformations divorced from human perceptual processing, such as reading an image as a

one dimensional scan-line, as Dean et al. (2006) report of the MetaSynth soware. e result is
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too oen perceptually incomprehensible. Nonetheless at particular scales humans have strong

acuity for recognising discrete paerns, and indeed we will assert that this is an important

aspect of music cognition in §4.4.

e work of Whitney shows how the analogue and digital aspects of a work support one

another, and also that while electronic computers are oen extremely convenient, they are

not necessary. ere are dangers in working with electronic computers, in that by not taking

full consideration of orientational metaphor, or coherent paern, the results of digital trans-

formation are likely to be incomprehensible. However we should certainly not downplay the

potential importance of computer languages in a rich creative process, a subject we will explore

in chapter 6.

2.6 Acid Sketching – Semantic Imagery

We have discussed two flavours of symbols in Dual Coding theory, analogue imagens and

discrete logogens (§2.2.1), as important to understanding human perception and cognition. We

will develop an argument for the relevance of this to programming languages in later chapters,

for now however we ground the discussion so far in practice, with a working prototype that

demonstrates the use of symbolic, analogue imagery in a user interface for music. A video of

Acid Sketching in use is contained within the accompanying DVD.

e Acid Sketing system was developed through the present research, to understand how

geometric forms and relationships can be meaningfully used in a computer system. e Acid

Sketching interface consists of an ordinary piece of paper, which is also a projection surface.

When shapes are drawn on the paper with an ink pen, they are identified and analysed using

computer vision. eir shapes are translated to sound synthesis parameters, and their relative

positions translated into a polyphonic sequence.

e procedure to turn shapes into a sequence of sound events is as follows. Shapes are

identified from a digitised image of the paper via a consumer grade webcam. is is done us-

ing the OpenCV (Open source Computer Vision) library developed by Intel Corp. Using this

library, the contours of the hand drawn lines are identified, and the shapes which they describe

are enumerated. e centroids of the shapes are calculated, and a minimum spanning tree con-

necting them is constructed. e result is the graph containing exactly one path between any

two shapes, whose spanning traversal is minimised. Starting from the most central shape, the

minimum spanning tree is followed, to place the shapes in a sequence. Time intervals between

each pair of shapes are given by the length of the edge connecting their centroids, which are

scaled relative to an adjustable beats-per-minute value. Because the minimum spanning tree
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branches, events may co-occur, which in musical terms results in polyphony.

is use of a minimum spanning tree turns a visual arrangement into a linear sequence

of events, a kind of dimension reduction. In terms of computational complexity, a simpler

approach would have been to simply disregard one dimension, for example by reading the

events from le to right. However we argue that greater richness is achieved by using this

graph structure built from the perceptually salient measure of relative distance in 2D space.

Aer all when we view a picture, our eyes do not generally read from le to right, but instead

jump aroundmultiple fixation points influenced by the structure of the scene (Henderson, 2003).

Sound synthesis is provided by nekobee, a free/open source emulator of the analogue Roland

TB-303 Bass Line synthesiser. e nekobee soware is no longer actively maintained, but con-

tinues to be available in Linux operating system distributions. e TB-303 is best known for its

use in the Acid House genre, hence the name Acid Sketing (we discuss perception of synthesis

in acid house music in §3.3.3). e nature of each sound event is given by morphological mea-

surements of its corresponding shape, where each measurement is mapped to sound synthesis

parameters. Specifically, roundness is calculated as the ratio of a shape’s perimeter length to its

area, and maps to envelope modulation; angle is that of the shape’s central axis relative to the

scene, and maps to resonance; and finally, the shape’s area maps to pitch, with larger shapes

giving lower pitched sounds.

Visual feedback is projected back on to the paper using a standard data projector, with the

camera input aligned to projector output in soware. is feedback takes the form of moving

circles, tracing the path from one shape to the next along the edges of the minimum spanning

tree, flood-filling each shape as its corresponding sound event is triggered.5

While soware based, Acid Sketching aims to avoid some of the traps of digital representa-

tion. One such trap is placed by the digital representation of an image, generally a two dimen-

sional array with x and y as indices, or the underlying single dimensional representation of a

scan-line. In Acid Sketching, what is significant is placement not relative to two dimensions,

but relative to all the other marks on the page. Further, the geometric calculations used in this

Acid Sketching prototype are not formally tested, but illustrates our hypothesis that correspon-

dence between shape and timbre are straightforwardly learnable. If this hypothesis holds, this

prototype system could be developed further into an engaging interface for live music. Work

inspired by Acid Sketching is underway at the Computer Laboratory at Cambridge University,

investigating such correspondences from the perspective of human-computer interaction.

e symbolic nature of the shapes in Acid Sketching gives particular insight to our overall

theme. It demonstrates a use of analogue symbols which have morphological properties con-

5For the purposes of demonstration, the video for Acid Sketching on the DVD shows this feedbackmixed directly
with recorded video, rather than projected into the scene.
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tinuously mapped from those of what is represented. A criticismmay be that these symbols are

not truly analogue as they are represented digitally; from the perspective of the computer, we

can think of there being many millions of discrete sounds to represent, and potentially at least

the same number of discrete symbols to represent them. It is more useful however to think of

these as analogue symbols with a continuous, perceptually salient mapping to the represented

sounds. At a particular scale the underlying granular, discrete representation begins to show,

but as with atomic units in physics, this is outside of the normal limits of human perception.

e simulation is accurate enough to be perceived as analogue.

Acid Sketching demonstrates how analogue symbols may be interpreted through the use

of existing computer vision libraries. We can think of these libraries as models of perception,

which while impoverished compared to human perception, are nonetheless close enough to

be useful in interface design. While creating these perceptually salient continuous mappings

is relatively trivial, the challenge comes when we try to integrate analogue and discrete sym-

bols in a mutually supporting manner. How may we relate abstract, discrete symbols with

perceptually grounded, continuous symbols? For one answer, we look to the vocal tract.

2.7 Phonemes

For most people, the instrument that most directly grounds symbols is the vocal tract, with

paralinguistic support from their hands. For Deaf people, it is the other way around, with

hand gestures providing the ‘atoms’ of language and the mouth and face adding phrasing.

e expressive equivalence of signed and spoken languages (Suon-Spence and Woll, 1999)

demonstrates dependence of language on movement rather than sound, a point we will return

to in §3.1.

In spoken form, language is represented within the discrete symbols of phonemes, the units

which we represent with sound. e phonetics of English has a comparatively poor correspon-

dence to the leers of its alphabet, and so to unambiguously transcribe English pronunciation,

the International Phonetic Alphabet (IPA, see Ladefoged, 1990) is generally used. e IPA in-

cludes 107 leers and 52 diacritics, split into two tables, one for consonants and one for vowels.

Both tables are organised according to place of articulation, and so we can say that these sym-

bols use physical positions to classify sounds. at is, phonetics grounds speech not in sound

images, but in bodily movement. is is an important distinction, which we mark now to be

built upon later through chapter 3.

A phoneme exists in three modalities: as a discrete symbol, as a configuration of the vocal

tract, and as a sound. Phonetics binds these very different modalities together into a whole,
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allowing us to communicate discrete structures of language throughmovement, whether its the

hand that writes or signs, or voice that sounds. e following section introduces an artwork

that brings the role of movement in communication and sound perception to the fore.

2.8 Microphone

Figure 2.1: Microphone, by Communications, 2010. Media: CNC milled plywood, webcam, speaker array,
soware.

Microphone is an artwork by Communications, which is a collaboration between EunJoo

Shin and the present author. Microphone was installed at the Unleashed Devices group show

at the Watermans gallery London in Autumn 2010. Microphone invites participants to com-

municate with each other across a gallery, using two large microphones. e devices in Micro-

phone do not operate in the same way as conventional microphones as we described in 2.1. e

sounds are captured not with a conventional electronic transducer but with a digital camera,

with soware trained to produce vowel formants from mouth shapes.

e work invites participants to communicate using vocal sounds as a medium for gesture

without language, bringing focus on the role of movement in communication. It evokes a

feeling that is literally visceral, of vocal organ encoding paerns of movement into sound, and

being perceived as movements.

Microphone uses computer vision in a similar manner to Acid Sketing described above

(§2.6), in that it uses OpenCV blob detection to identify a polygon representing the shape of

the mouth. From this polygon the parameters of roundness and area are derived as with Acid

Sketching, along with the aspect ratio (height/width ratio of the minimum enclosing rectangle),

and the convex hull area. ese measures are not used directly, but instead used in combination

to calculate a measure of similarity between the given mouth shape and the five vowels a, e, i, o

41



C 2: S

Figure 2.2: Microphone, showing a speaker array whi carried sounds between the two devices. e dis-
tance between the devices was constrained by installation in a group show.

and u. e average formant values of the three closest vowels are then calculated, weighted by

their similarity to the target shape. Although five discrete vowels are used in this calculation, a

range of sounds between them are mapped continuously, so for example the neutral ə (schwa)

vowel would be a point between them.

Microphone applies digital technology to map between modalities, but entirely analogue

means may be used to much the same ends. ere are long traditions of using the mouth as

paralinguistic, musical instrument, either alone or augmented with instruments such as the

Jew’s harp, as we will see in the following chapter. e digital foundations of this artwork

allows expectations to be confounded in interesting ways, but outwardly, Microphone is an

entirely analogue artwork.

2.9 Discussion

We have taken a fairly unconventional view of symbolic representation, but one that we have

suggested to be plausible in the context of cognitive psychology. In particular, we have taken

a view of symbolic representation that takes both analogue and discrete symbols into account.

Computation may at base be defined by the manipulation of discrete symbol sequences, but

may be applied to simulate analogue systems, including aspects of the outside analogue world.

Further, human cognition, including that of computer programmers, involves both analogue

and discrete processing, lateralised and integrated.

Against this background we view programming as a human activity that spans both ana-

logue and discrete domains. e twoworkswe have presented, Acid Sketching andMicrophone

have in part been developed to explore this view. However both show the discrete aspects of
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programming as somewhat subservient to analogue aspects in the final artwork. ey are ‘in-

teractive’ works, where participants engage with the work by making analogue gestures which

are digitised, transformed, then transduced back to analogue. In the case of Acid Sketching it

is hand drawn gestures which are digitised, and in the case of Microphone it is mouth move-

ments. e purpose of the digitisation however is to allow transformation from one analogue

domain to another.

ere is a further process of discretisation which happens in the ear and brain, perceiving

Microphone’s output as vowel categories, and Acid Sketching’s output as discrete sound events

in pitch classes. is categorical perception happens in tandem with the expressive spatial

perception, where a listener might aend to how the participant transitions from one vowel to

the next, or plays with different timbral parameters.

e computation in Microphone and Acid Sketching is hidden behind analogue interfaces

based upon gesture, visual feedback and sound. is is the case in a great deal of ‘interactive’

computer artworks, where a great deal of energy is put into finding novel means of analogue

expression. is is also very much true in computer music interfaces, such as those demon-

strated at the New Interfaces for Musical Expression conferences.6 Analogue expression is

oen a focus in the arts, and so research exploring new analogue interaction is of course very

welcome. It has however led to some questionable claims being endemic in the electronic arts;

that analogue interfaces are somehow more advanced than discrete ones, that computation

necessarily should be hidden in art, and that computation is secondary to analogue experience.

For example the artist Simon Penny has the following to say about his piece “Fugitive 2”:

e intervention of fugitive is to present a mode of interaction which is pred-
icated on the system interpreting a person engaged in normal human bodily be-
haviors. is is in stark contrast to the conventional notion of interface, in which
ideas and concerns must be encoded, usually as alphanumeric data, demanding the
sequential pressing of lile buons on a board. is ut[t]erly impoverished inter-
face functions, in fact, as a filter, excluding all rich and diverse aspects of human
intelligence which cannot be encoded alphanumerically.7

is may seem a reasonable point of view until we notice that he is arguing against the

writing of novels as impoverished compared to (in this case) moving around before a cam-

era. To argue that either analogue or digital representations are more advanced is equivalent

to arguing whether novels or paintings are a more advanced form of expression. Indeed we

might argue that novels are ‘more advanced’ as print is a later technological development, and

indeed builds upon the accomplishments of paint. is would however be a weak position to

6http://nime.org/
7Retrieved from http://ace.uci.edu/penny/works/fugitive2.html, July 2011
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take; as we have argued through this chapter, humans are marked by the integration between

linguistic and spatial forms. It follows then that whether discrete representations are shown

in works depends entirely on the focus of the artist, whose engagement may include source

code, wrien natural language, musical notation, low-resolution lights arranged in grids, or

any other discrete, linguistic code.

From here then, we look for ways in which computer art can integrate the various codes

of language and perception, in new works that engage with full, rich experiences across both

domains.
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Words

Symbols are to words as positions are to movement. ese words that I am writing, and you

are reading, are sequences of leers wrien in the Latin alphabet, from le to right. ey are

members of a lexicon of many hundreds of thousands of words, which includes much apparent

redundancy, although every synonym has its own paern of usage. Before words came to be

wrien like this, they were only spoken. A pencil leaves a line, but air pressure waves from

the moving vocal tract sele quickly to the mean, leaving no trace behind. Except of course

the subjective trace, brought by hair movements in the cochlea, reduced by the listening brain

into a perceptual image, then perhaps reduced further into a form held in memory.

As we have seen, the English alphabet has a loose phonetic mapping. Children are con-

ventionally taught to read using phonics, teaching leers of the alphabet by typical sounds

they represent, which are strung together to pronounce words. However, there is a significant

leap from theory to practice; this is a natural language, with much ambiguity and exceptions

for every rule. Nonetheless once learned, natural language can feel effortless to the point of

invisibility. We may feel completely absorbed in a text, which is remarkable as literacy is a

comparatively recent, wholly cultural development; we have not evolved to read and write.

In programming, words are used rather differently. Aside from comments wrien in natu-

ral language, words in source code are either language keywords, or names given to variables

and functional abstractions by the programmer. As with the use of spatial arrangement exam-

ined in §2.2.3, through the process of tokenisation, the words are ignored by the language in-

terpreter as secondary notation. Words are not treated as having morphology, and are instead

reduced to unique, shapeless tokens. Even the practice of capitalising names of libraries of code

is by convention, rarely enforced by the interpreter; the naming is le entirely to the program-

mer. is differs from natural language, where morphological word structure relates important

meaning, such as the suffix -s or -es to indicate plurals in English. Furthermore, program-

ming language does not have the sound symbolism we noted in §2.4, such as the onomatopœic
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words cluer, quack and bang, or the perceptual relation between fricative consonants and

sharp shapes (Ramachandran and Hubbard, 2001b). In natural language the morphology is not

only syntactic, but has structure which mirrors what may be represented. Such relations are

generally not considered important to modern study of linguistics, but nonetheless illustrate

a richness of human language, which we may draw upon in the design of human-computer

interactions.

While word morphology is absent from programming languages, allusions to it may oc-

casionally be found. In the Ruby language it is a convention for destructive methods, as in

those that directly modify mutable variables, to end in an exclamation mark (Flanagan and

Matsumoto, 2008). Regular Expression (regex) language is designed for matching strings of

text according to rules defined by terse, oen single character operators and modifiers (Friedl,

2006). e result is a language on the word level; for example the following matches some

variants of the root word colour:

/\bcolou?r(s|ist|ing)?\b/

Despite wordmorphology not featuring significantly in programming syntax, it is of course

important for a chosen name in source code to reflect what it symbolises, including morpho-

logical aspects such as−s suffixes on methods that return multiple values, and appropriate use

of nouns and verbs to describe object classes and methods. is is convention in secondary

notation which we will cover in greater detail in §5.1.

e general absence of word structure in the syntax of source code is indicative of the lack

of articulation in the activity of programming. e particular movements of a programmer’s

fingers are le behind at the keyboard, translated there into discrete on-off states. Our question

for artist-programmers working in computer music is, how can we relate our discrete repre-

sentations back to analogue movement? Words have life as articulations, as well as sounds

and symbol sequences, and so artist-programmers have much to learn from their study. In the

following we will look for greater understanding of this issue by examining the perception and

structure of words, finding motivation in vocal traditions of music.

3.1 Perceiving Speech as Movement

We begin our examination of words with a reduction of the spoken word to minimal compo-

nents. Sine wave spee is where the complex, time-varying properties of a speech sound signal

are reduced to a few sine waves (Remez et al., 2001). Typically, the frequency and amplitude of

three sine waves are mapped from the lowest three formant frequencies, and a fourth sine wave

from a fricative formant. e result is a bistable illusion, where an untrained human subject
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initially perceives sinewaves as separate, burbling artificial sounds. However once they are

directed to aend to the sounds as a human voice, they are able to perceive a single stream of

intelligible speech. It is surprising that speech is perceivable at all from these simple modulated

tones, with all hisses, pops and clicks removed. Despite the short-term acoustical properties of

speech being absent we can still perceive speech in the variance of pure tones, even identifying

particular speakers by it.

e influence that non-acoustic cues hold over speech perception is also demonstrated by

the McGurk-McDonald effect (McGurk and MacDonald, 1976). A classic demonstration of this

effect is where a subject is simultaneously presented with the sound /ba/, and a video of a face

mouthing the syllable /ga/, but ‘hears’ neither, instead experiencing the illusionary syllable

/da/. is perceptual effect is strong for the majority of test subjects, stable even when subjects

are made fully aware of what the audio stimulus really is. What is more, the illusion persists

even when subjects are not consciously aware of what they are looking at; Rosenblum and

Saldaña (1996) reproduced the effect without showing the face, but instead only point-light

movements taken from a moving face. is is a closely related result to that of sine-wave

speech; both cases show that features of the signal are not as important as how those features

vary. In other words, movements derived from the signal source are more important than

recognition of its short-term properties.

Such speech illusions have been taken as support of the Motor eory of Speech Percep-

tion (Liberman and Maingly, 1985). According to this theory, a ‘special module’ has evolved

in the human brain for speech, responsible for both speech production and perception. De-

spite having some popular notoriety, motor theory is not widely supported within the speech

perception field, as the notion of this special module is not well defined (Mole, 2009), and is

not supported by the evidence (Galantucci et al., 2006). While the concept of a special module

for language is generally no longer taken seriously, other aspects of the theory have become

widely accepted. Motoric contribution to speech perception is well supported, and sits well

with broader literature demonstrating strong motoric contribution to perception in general

(Galantucci et al., 2006). It would seem that rather than speech being ‘special’ as Liberman and

Maingly originally suggested, that meshing of action and perception is a feature of human

perception in general.

e meshing of perception and action has enjoyed renewed interest since the existence of

mirror neurons was identified by di Pellegrino et al. (1992). Mirror neurons were identified as

a class of neurons in the F5 region of the premotor cortex in a laboratory experiment with

a Macaque monkey. ese neurons were seen to fire both when the Macaque observed an

assistant grabbing food, and when the Macaque himself grabbed the food. e explanation
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offered by di Pellegrino et al. (1992) is that these neurons represent action understanding in

motor areas. e hypothesis is that because the same neuron fires regardless of whether the

subject or an observed individual performs an action, that this is the basis of social cognition.

is experiment captured the imagination of many researchers interested in embodied social

cognition, not least Ramachandran (2000), who was driven to exclaim that the discovery of

mirror neurons was on the same level of the discovery of DNA. is enthusiasm has reached

the field of music psychology, with Leman (2007) citing mirror neurons as a basis for social

understanding of music cognition based on gesture/perception couplings. However despite all

this enthusiasm, mirror neuron theory has a number of problems. For example, several of its

original assumptions have not held, and it fails to explain a wealth of evidence from brain lesion

studies (Hickok, 2009). A neural system underlying social cognition is certainly cause for great

interest, but it is early days for mirror neurons, and care should be taken not to extrapolate

from findings which remain controversial and unclear (Dinstein et al., 2008).

It is early days for neurobiology in general, but controversy over these initial claims does

not mean that a human mirror system does not exist in some form, with or without mirror

neurons. While fMRI studies do not give data on the level of individual neurons, a number

show overlap in performing and observing actions (e.g. Calvo-Merino et al., 2005; Chong et al.,

2008), suggesting motor simulation does have a role in action understanding. In any case, we

have seen evidence for strong motoric contribution to speech perception, demonstrating the

influence our bodies have over what we experience. is continues the theme of interaction

of continuous and discrete representations from the previous chapter; speech is a medium for

discrete units of language deeply intertwined with the continuous movement that carries it.

3.2 Vocable Words in Music Tradition

Like speech, instrumental sounds are produced via a series of articulations of the human body.

Modern digital computers allow us to synthesise sound with algorithms, but nonetheless we

perceive the result with a brain evolved and developed for deriving movement from sounds.

We have examined the role of articulation in the perception as well as production of speech,

and now consider the same or analogous relationship with the sounds of musical instruments.

In particular, we consider articulation as a perceptual bridge between musical instruments and

the human body, and will later propose a means for this bridge to be used in the design of

computer music notation.

A vocable word is simply a word that is able to be spoken and recognised, according to a

system of phonetics (§2.7). eword vocable is generally used to describe ‘nonsense’ words that
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are non-lexical, but nonetheless readily pronounceable using the phonetic sounds of a partic-

ular language. In musical tradition, vocable words are oen used to describe an articulation of

a musical instrument. For example a music instructor may use their voice to describe a sound

their student should try to make on their violin, perhaps by singing a pitch contour while using

a consonant-vowel paern to indicate a particular bowing technique. Over time the student

will learn to perceive the phonetics of their instructor’s voice as the sound categories of their

instrument.

Vocable words can be found in use across the continents and in many musical traditions.

Indian classical music has Bol syllables to ‘speak the drums’ where, for example, ṭe represents a

non-resonating stroke with the 1st finger on the centre of the dāhinā (right hand) drum (Kip-

pen, 1988). Bol syllables are oen used in refrain, where the tabla player switches from playing

the drums to speaking them with vocables. In the Scoish Highlands we find Canntairead of

the bagpipes (Campbell, 1880), for example hiaradalla represents an echo of the D note in the

McArthur Canntaireachd dialect. As with Tabla, Canntaireachd is used in performance, and

the Indian Dhrupad singer Prakriti Dua and piper Barnaby Brown have collaborated to unite

the forms in vocal performance1.

Canntaireachd and Bols are largely vocal traditions, which have come to be wrien down

in recent times. Some vocables have traditionally been transcribed however, such as theien-

tzû notating the delicate finger techniques of the guqin (Chinese zither). For example’üan-fu

indicates that the index, middle and ring finger each pull a different string with a light touch,

making the three strings produce one sound ‘melting’ together.

In her doctoral thesis “Non-lexical vocables in Scoish traditional music”, Chambers (1980)

divides the use of vocables as either being culturally jelled or improvisatory. Jelled vocables,

such as Bol or Canntaireachd vocables, are part of a formal system, where particular vocables

represent particular articulations of an instrument. Improvisatory vocables on the other hand

are made up during a performance, such as scat singing in Jazz. Chambers acknowledges that

the line between jelled and improvisatory is oen blurred, where for example a player for-

malises some aspects of their ‘diddling’ over time. Another distinction made by Chambers is

between imitative, onomatopoeic vocables and associative, arbitrarily assigned vocables. is

is a perceptual distinction, as Chambers reports: “Occasionally a piper will say that a vocable is

imitative (indigenous evaluation) when analysis seems to indicate that it is actually associative

(analytic evaluation) because he has connected the vocable with the specific musical detail for

so long that he can no longer divorce the two in his mind” (Chambers, 1980, p. 13). In other

words, a vocable may appear to mimic an instrumental sound on the perceptual level, without

1A video of this collaboration is available online; http://www.youtube.com/watch?v=I_7wh_ClamA (ac-
cessed March 2011)
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having similarity on the level of the sound signal. is seems to be true in the general context

of onomatopoeia – for example where a native English speaker hears a hen say “cluck”, their

German neighbour may perceive the same sound as “tock” (de Rijke et al., 2003). Research into

tabla Bols have however found them to be genuinely imitative, sharing audio features with

the instrumental sounds they represent, identifiable even by naive listeners (Patel and Iversen,

2003).

A third distinction can be made between vocable words in spoken and wrien form. A

reader of a vocable applies paralinguistic phrasing not derived from the text, but nonetheless

with great musical importance. Conversely a transcriber may resolve ambiguity in a spoken

vocable by writing a precise interpretation of the intended discrete paern. ese issues are of

course common to all notation systems, including those of natural language (§2.2.1). We can

say however that to some degree a wrien vocable may capture the discrete essence of a sound,

or at least a mnemonic focus to the whole articulation. From our discussion of Dual Coding

(§2.2), we can understand a wrien vocable as less accurate in capturing the full expressivity of

a sung vocable, but more accurate in precisely capturing aspects of its discrete structure. is

is simply a focus on either discontinuities or on smooth transitions, both important musical

features, and as such a sound may be fully understood in terms of both.

e popularity of staff notation in Western Classical music has, at least in the case of Can-

ntaireachd, led to a reduction in the teaching of jelled vocables (Chambers, 1980). However in

reaction to the lack of standard means to notate articulation in staff notation, Martino (1966)

proposes his own method grounded in phonetics. Each of his notational marks represent a

vocable syllable, for example the mark ′ has the phonetic representation tat, described as a

“incisive, crisp aack with similarly dosed decay”. Martino asserts that the articulatory pa-

rameters of any musical instrument can be understood as a subset of those of the voice, and as

a result that his notation applies to all instruments.

Vocables in music are oen referred to as being non-lexical (Chambers, 1980). It would

seem that the definition of jelled vocables implies a lexicon, a dictionary of words that symbol-

ise particular articulations of an instrument. On closer examination however vocable words are

sub-lexical. Canntaireachd is not so much structured by a lexicon but by a system of phonet-

ics, which in combination, generates a broad range of possible vocable words, with no lexical

reference apart from their phonetic structure. As such, improvisatory vocables are pure sound

symbolism, with reference occurring on the phonetic, and not lexical level.
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3.3 Timbre

Timbre is an important component of music, yet is lile understood. We have seen how vocable

words allow instrumental articulations to be related to articulations of the vocal tract. Artic-

ulation is closely related to timbre, where movements of instrumentalists such as of plucking

style, breath control and aer-touch have strong influence over the resulting timbre. In the

present section we will build an argument that this influence is crucial to the experience of

music, asserting that in perceptual and conceptual terms, articulation is timbre.

e American Standards Association (ASA) defines timbre in their Acoustical Terminology

standards as “…that aribute of auditory sensation in terms of which a listener can judge that

two sounds, similarly presented and having the same loudness and pitch, are different” (Breg-

man, 1994). Where the ASA standard is quoted it is oen derided, for example Bregman (1994,

p. 92) paraphrases it as “We do not know how to define timbre, but it is not loudness and it is

not pitch”, in other words an “ill-defined wastebasket category”. ere have been several re-

search aempts to establish a beer definition of timbre, but with lile success, and in a broad

review Hajda et al. (1997) highlight this lack of definition as the most lasting obstacle in the

research of timbre. Indeed without being able to define timbre, it is difficult to know how to

look for other obstacles. Timbre seems to be an important part of music, but we cannot agree

on what it might be, or even how to approach defining it.

For context, the same ASA document as above is also quoted as defining pitch as “… that

auditory aribute of sound according to which sounds can be ordered on a scale from low to

high.” We can restate this in our terms, that ASA define pitch as an orientational metaphor

of the sort examined in §2.2.6. We infer then that the ASA believe that other aspects of sound

are not orderable along such a scale. Pitch certainly has a clear relationship with the physical

world, being the perceptual counterpart to frequency of waves of air pressure. Pitch also cor-

relates with physical body size, as smaller animals tend to have shorter vocal tracts with higher

resonant frequencies, resulting in higher pitched vocalisations. is makes pitches amenable

to being ordered along a quality dimension. However, the perceptual quality of loudness has a

similar relationship with wave amplitude and physical body size; smaller things tend to be qui-

eter. e ASA definition of pitch is under-specified; it fails to exclude orientational metaphors

whichwe claim structuremuch of the experience of music, timbre included. To look for support

for this claim, we turn to psychology of timbre literature, where the search for the dimensions

of timbre has been a common research aim.
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3.3.1 Multi-Dimensional Scaling

Unlike pitch and loudness, timbral differences do not have direct relationships with the fun-

damental features of air pressure waves, hence their consignment to a wastebasket category

(Bregman, 1994). However a number of researchers have aempted to identify distinct quality

dimensions of timbre. e hypothesis is that there are a certain number of quality dimen-

sions defining a space in which timbre is perceived. ese aempts have in general applied

Multi-Dimensional Scaling (MDS; Shepard, 1962) or closely related approaches of dimension-

ality reduction. In MDS experiments, similarity judgements are collected from human subjects

and interpreted as distances, which are then used to reconstruct the perceptual space in which

the judgements are assumed to have been made. We can express this aim as capturing the di-

mensions of mental imagery (§2.2.1) or conceptual spaces (§2.2.5) at play when listeners aend

to musical timbre.

MDS similarity judgements are classically given in response to pairs of stimuli, as a mark

along a scale from very dissimilar to very similar. ey may alternatively be derived from sort-

ing tasks or closest pairs in triplets (Weller and Romney, 1988; Hajda et al., 1997), with various

effects on the scope and reliability of the results (Bijmolt and Wedel, 1995). An early aempt

at applying MDS to instrumental sounds was performed by Grey (1977), where human subjects

were asked to rate pairs of sounds on a similarity scale. e stimuli were synthesised based

upon the physical properties of orchestral instruments. However Grey interpreted the MDS

solution as showing clustering that went beyond familial groupings of instruments to show-

ing articulatory features. Furthermore Wessel (1979) used MDS techniques to produce control

structures for synthesis, so that additive synthesis of timbre could be manipulated according

to movements in a perceptually salient space resulting from the scaling.

Wessel interpreted his MDS solution as having two dimensions, namely brightness and

bite. Brightness is generally quantified as the frequency of the spectral centroid, and Wessel

(1979) relates ‘bite’ to the nature of the sound onset or aa. A review of MDS timbre studies

performed since Wessel’s early work shows the majority of studies have these two dimensions

in common (Caclin et al., 2005), however besides this there is a great deal of inconsistency,

with many other dimensions identified in individual studies without broader agreement. ese

include spectral flux, spectral spread, spectral irregularity and harmonic onset asynchrony.

In summary, the broad finding of MDS studies of timbre thus far is that spectral centroid

and aack time seem to be important. Lile more is agreed upon except for one important

point; inter-individual differences are significant (Caclin et al., 2005). From our perspective,

we would certainly expect it to be so, perception being not directly against the background of

physical reality, but of personal experience of it (§4.2). Some of the inconsistency in the results
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of MDS timbre studies may be methodological, MDS is known to be highly sensitive to optional

cognitive processes influenced by test conditions, even when similarity measures are based on

Stroop interference (reaction times). For example, MDS is oen used to find whether two

dimensions of perception are related, by looking for either a city block or Euclidean distance

metric in the MDS solution (e.g. Gärdenfors, 2000, p. 25). However, Melara et al. (1992) found

that suchmetrics were entirely down to optional processes employed by test subjects, and could

be straightforwardly manipulated by altering the wording of test instructions. Such optional

cognitive processes are a serious and difficult problem to deal with.

Krumhansl (1989) looks beyond methodology in suggesting that the very notion of univer-

sal dimensions of timbre is flawed. Although there may be one or two dimensions with general

salience, different sound sources have particular characteristics resulting in their own dimen-

sions. Instead, timbre should be understood not just as frequency analysis, but also relative

to the dynamics of a real, simulated or imagined physical source behind the sound. It is clear

that MDS studies have focused on the former (Hajda et al., 1997), but we join Krumhansl in

arguing that the strong role of physical movement in the perception of timbre has too oen

been overlooked.

3.3.2 Grounding Timbre in Movement

Many of the words used to describe instrumental sounds are metaphors for the physical mani-

festations of movement, shape and the body; we have already seen that Wessel (1979) used bite

to describe sound onset quality, an oral metaphor indicative of the close perceptual relation-

ship between sound and bodily movement. is theme is explored by Traube and D’Alessandro

(2005), who finds that vocal articulation has a strong role in guitarists’ timbre perception.

Traube and D’Alessandro investigate both the lexical words and non-lexical vocables that gui-

tarists use to describe guitar sounds. In the former case, ey asked guitarists to choose words

to describe guitar notes. Amongst other words, sounds obtained by plucking the string close to

its middle were ascribed words such as closed and damped whereas plucking close to the bridge

were described as thin and nasal, and plucking midway, over the sound hole was described as

large, open and round. is is in apparent subconscious reference to mouth shapes for the vow-

els that have similar formant structure to the resulting guitar sounds. Traube suggests that this

shows use of mental imagery to communicate timbre, relating it to the use of vocable words by

tabla players. Indeed through experiment Traube demonstrates that when guitar players im-

provise vocables, there are positive correlations both between plosive consonant and plucking

angle, and between vowel and plucking position.

53



C 3: W

3.3.3 Music of Timbre

InWestern culture, the primary basis of music is widely considered to be that of pitch contrasts

over time. is is evident in the clinical definition of those with deficits in music perception;

amusia is generally considered primarily as a deficit in pitch perception popularly known as

‘tone-deafness’ (Pearce, 2005). ere are musics however where contrasts of discrete tones is

unimportant, which we describe asmusic of timbre. While we argue that perceived movement

is of universal importance to music, to some musics, it would seem that this is almost all there

is. e question is, can music achieve the same levels of complexity without tonality, or does

the focus onmovement involve a trade off, a shi frommusical contemplation, perhaps towards

something with a broader ‘non-musical’ function in culture?

In his book “Music, Language and the Brain”, Aniruddh Patel notes that despite much mu-

sical experimentation, music based on timbral rather than tonal contrasts is rare (Patel, 2007,

pp. 30–37). is is explained twofold; firstly, timbral changes oen require instrumental ma-

nipulations that are physically difficult to perform in quick succession. e second, cognitive

reason he gives is that timbral contrasts cannot be perceived in terms of intervals, so the higher

order relationships associated with tonal music are not supported by timbre. A given counter-

example is music of the tabla drums in Indian classical music, which Patel (2007, pp. 62–67)

explains by looking at the music culture around the tabla. In particular, he notes the extensive

use of Bol syllables, a jelled system of vocable words (§3.2). Patel concludes that these vocables

allow perception of complex timbral contrasts to be aided by cognitive resources developed for

linguistic structure.

We propose an alternative hypothesis to Patel (2007), that it is not specifically linguistic

sound categories which support timbre perception in Tabla music, but more generally cate-

gories of articulation, which just happen to be of the vocal tract in this case. e human ability

to perceive and categorise movement is used in the transmission of language, both in vocal and

sign languages (Suon-Spence and Woll, 1999), but we contend that this is a more general cog-

nitive rather than linguistic resource; speech is not ‘special’ (§3.1) as Patel implies. Audiences

can perceive tabla music because when performers speak the drums, listeners are able to relate

the sounds to the movements of their own vocal tracts. In the case of electronic dance music,

it is not the movement of the vocal tract, but of the whole body dancing that opens the door to

broad appeal found within large audiences.

e strong implication made by Patel (2007) is that without co-opting linguistic resources,

music of timbre would be impossible, or at least rare. Together with the lack of clarity found in

MDS study, it would be too easy to conclude from this that timbre is therefore unimportant in

music cognition, being either too complex or too formless to provide structure for music. Elec-
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troacoustic music has not found popular audiences beyond its academic base. However Patel

overlooks the existence and popularity of electronic dance music, which oen centres around

manipulation of synthetic timbre with apparently no supporting use of vocable words. An ex-

ample of this is the acid line, a musical style exemplified by the 1995 recording of “Higher state

of consciousness” by Josh Wink. is piece revolves around slow manipulation of the timbral

parameters of a repeating motif on the Roland MC-202, a monophonic, analogue subtractive

bass line synthesiser. Synthesis filters are manipulated on this machine during the piece, with

low-pass cutoff slowly increasing tension until releasing into a single, final crescendo. e

timbral changes of this example are slow, but one does not have to look far to find timbral

manipulation at a speed and complexity comparable with that of tabla virtuosos. For exam-

ple Autechre’s Gantz Graf (2002) has lile in the way of discernible melody, but manipulates

sound events at a speed on the boundary between percussion andmetallic drone. Autechre reg-

ularly aract audiences of thousands across Europe and the USA, who dance to fast-changing,

complex rhythms in the dark, with no visual accompaniment.

e role of movement is unsurprisingly central to dance music, but to the extent that as-

pects of music cannot be understood without dancing, or at least imagining oneself dancing.

e Clave rhythm is a case in point, where the main beats are emphasised not through musi-

cal accents, but in the associated dance steps (Agawu, 2003, p. 73). Indeed in many cultures

the concept of music encompasses both the sounds and the dance, and one is not understood

without the other (Agawu, 2003, p. 264). In the case of Autechre, the musicians provide rich

and complex timbral structures, for which audience members create their own reference points

through their own bodily movements.

Some musicians aempt to produce acousmatic music free from physical manifestation

and constraints. Sounds may include those recorded from recognisable sources, but are used

for their sonic properties. is music is not performed, only existing in recorded form, and in a

concert seing is played over loudspeakers. It is of course possible to enjoy this music through

physically static, deep listening, but we contend that it is difficult to do so, and that general

audiences find it troublesome to relate ungrounded timbre to their own bodily experience. is

difficulty is expressed well by Smalley (1994, p. 39); “In electroacoustic music where source-

cause links are severed, access to any deeper, primal, tensile level is not mediated by source-

cause texture. at is what makes such types of acousmatic music difficult for many to grasp.

In a certain physical sense there is nothing to grasp - source-cause texture has evaporated.”

Smalley concludes that to free timbre from source-cause, the composermust confront and enjoy

the dissolution of timbre.

Emmerson (2007a) describes a dichotomy between dance and art music in electronic music
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as being between either a focus or freedom from repetition. Emmerson relates repetitive music

to a grounding in the movements of the human body, and amorphous music to movements in

the environment. It should be noted however that while the celebrated electroacoustic com-

poser Stockhausen disliked the “repetitive language” in electronic dance music (Emmerson,

2007a, p. 62), he also compelled students of music to “go dancing at least once a week. And

dance. Please, really dance: three or four hours a week.” (Stockhausen and Maconie, 2000,

p. 170). We share the conclusion with Emmerson (2007a), that musicians who work on the

boundary between these dance and art musics are reconciling the dual themes of body and

environment. at these two groups are in many cases already using the same tools and lan-

guages offers such musicians a unique opportunity.

3.3.4 Defining Timbre

We have focused on the role of movement in timbre perception, but until now have avoided

explicitly defining timbre. In contrast to the approaches of trying to define timbre in terms of

spectral features, or the ASA approach of defining timbre by what it is not, we define timbre

more broadly in terms of mental imagery:

Definition: Timbre is sound as it is perceived, as mental imagery of positions, re-

gions and their variance in action spaces.

We need to be careful in interpreting this definition. Musical events are by definition dis-

crete, not only notes but also vocable words such as tabla Bols. However we characterise such

discrete symbols as signposts in continuous timbre space. We may notate timbre using discrete

symbols, but the timbre we notate is understood in terms of points, areas or movements in per-

ceptual spaces. us brightness names an analogue dimension, bright names a range within it,

and brighter a direction along it.

Our definition of timbre does not exclude pitch, and we contend that it is not possible to

do so – for example pitch and brightness are so interdependent as to be inseparable. When

pitch scales are used, aention is shied away from the continuous timbral quality of pitch

and towards discrete relationships between notes. is does not mean that mental imagery

of pitch height is ignored, but rather that the balance shis in some measure from analogue,

timbral movement to structures in a discrete domain. e development of staff notation in

the Western tradition has de-emphasised the older oral tradition of vocable words, distancing

music from the body (§3.2). is distance can be considered a freedom, allowing us to explore

and contemplate the multi-dimensional complexity of discrete tonality. However we contend

that what makes amelody affecting is its integration of both discrete notes and analogue timbral
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experience. e same can of course be said for integration between discrete paern and timbral

movement in Tabla playing.

Integration between the continuous and discrete in music is the normal case, but it is pos-

sible to perceive timbre without associated discrete coding. For example an elongated drone,

with smoothly fluctuating timbre, does not have discontinuities that would evoke discrete seg-

mentation. Likewise, if an event is repeated in performance with lile variation, such as a

repetitive kick drum, then it may be aended to primarily as a discrete paern, but still, its

pulse is likely to be perceived and understood relative to sounds around it in spatial terms, in

relation to its low position on the pitch dimension.

3.3.5 Timbral analogies

If timbre is a product of movement in mental imagery, then we might expect orientational

metaphor (§2.2.6) to play a large part in its structure. is is what the notion of timbral analogy

amounts to, the idea that timbral differences are perceived as distances, and related to one

another as such in perception. Wessel (1979) applied a perceptual space identified throughMDS

(discussed in §3.3.2) to test the existence of timbral analogy and found encouraging results;

subjects would tend to choose the D in the form A is to B as C is to D that results in the

distance AB being closest to CD. A similar experiment is given by McAdams (1999), which

also showed some support for the timbral analogy hypothesis, however also showed strong

individual differences and irregularities. As Patel (2007, pp. 30-34) points out, this indicates that

unlike tonality, music of timbre does not easily support intervals as a shared category system.

However while McAdams (1999) does find individual differences, electroacoustic musicians

made judgements more consistent with one another, suggesting that this could just be a maer

of cultural exposure. It would be interesting therefore to apply similar experimental design to

the perception of timbral analogies between the parameters of bass line synthesisers (such as

the Roland MC-202, §3.3.2), and compare the results between those of varying exposure to acid

house music.

On another level, we may question whether shared category systems are necessarily im-

portant to music. As we have argued, music can be grounded and creatively interpreted in

the dance of the listener, and so the job of the composer or improviser is in such cases not to

encode a musical ‘message’ to be unambiguously decoded. Rather, it is to sculpt music with

structures of interest, that may be interpreted according to analogies dynamically constructed

by the listener; music that sounds different on each listen, being framed by the particular state

of the listener’s mind and body.
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3.3.6 Sound source modelling

In relating mental imagery to action spaces, our definition of timbre implies that sound source

modelling is the basis of sound perception. An expanded form of this assertion is that through

listening to a series of sounds we build a model of aspects of a physical object and its excitation,

and how it reacts to actions to produce sounds. is model is then used to structure perception

of the sounds which gave rise to it.

e idea that we perceive a sequence of events relative to a model built from those events

may seem far-fetched, but such dynamic relationships are far from alien to music psychology.

For example it is widely accepted that underlying metre is inferred from rhythm, and that the

rhythm is then perceived relative to the metre (London, 2004). is is particularly explicit in

Indian classical music, where the metric tāl is a clapping paern inferred from the rhythm that

is based around it (Clayton, 2008). is can happen within the time frame of the psychological

present, so that the perception of metre and rhythm are unified, appearing to influence one

another simultaneously. It would seem that the same is true of timbre; humans are able to

identify instruments within a mixed auditory scene effortlessly (Bregman, 1994), and so at least

some source modelling is at play. e questions are, to what extent does this ability contribute

to timbre perception, and to what extent are neural motor circuits involved?

Some studies have found correlations between deficits in music perception and of spatial

ability, with Douglas and Bilkey (2007) making the argument that amusia is part of a general

deficit in spatial ability, supporting the assumption that music perception is a form of spatial

perception. Such findings are controversial, and difficult to interpret; among other issues it

is unclear whether spatial ability improves music perception, or listening to music improves

spatial ability (Stewart and Walsh, 2007), although we would suggest a third option that both

cases are true. at there is some relation seems clear, for example Cupchik (2001) finds that

mental rotation of figural drawings (aer the classic mental imagery work discussed in §2.2.1)

predict ability to discern analogous musical permutations. It is interesting however that this

debate in the literature is made solely on the basis of pitch perception. If, as we suggest, music

is perceived simultaneously in terms of discrete events and analogue movements, and pitch

tends towards the former use, then perhaps more conclusive results would be found if wider

timbral aspects of music were examined with these experimental designs.

3.3.7 Universality of Timbre

Music is popularly described as a universal language, the implication being that music is not

culturally specific, and does not need to be learned. ere is support for some interpretations

of this in the literature, Fritz et al. (2009) found that listeners in Mafa, Cameroon judge the
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emotion of Western pieces of music in agreement with Western listeners, at above chance

levels. We may imagine how the Mafa achieved this feat, despite lacking prior exposure to

Western culture. Emotion is defined by Fritz et al. somewhat coarsely as being either happy,

sad or scary, to which they report clear correlations with basic musical features; for example

‘happy’ music has a faster tempo and ‘sad’ a slower tempo. However these universals are

not necessarily musical in nature. It is universal human behaviour for happy people to move

faster than sad people, due to physical effects on motor control. While it is unsurprising that

Western musicians choose to take advantage of this in their work, it is quite a stretch to make

the broad claim that music is a universal language on this basis, or even that music has universal

components. It is equivalent to observing that when people are sad, they speak slower, and

arguing on this basis that speech is a universal language. While humans are universally driven

to make music, as they are driven to speak, the result is many musics, not one.

So, naive listeners may be able to pick up references to mood in Western music, through

certain coarse universals of an analogue code. Overall though, music is defined within a partic-

ular human culture. Traditional dance is a visible aspect of this, not just accompanying music

but an intrinsic part of the musical experience (§3.3.2). Indeed we agree with the analysis of

Western musiing by Small (1998), that music is an activity that encompasses not only play-

ing instruments and dancing, but also concert ticket sales, dressing up, the hubbub in concert

hall atria prior to the concert, the clearing of throats, and the striding on stage of the conduc-

tor. Music is a cultural activity in the deepest sense, and by taking an external perspective on

an otherwise familiar Western activity, Small shows what strange creatures we are. It is no

surprise then that Western ethnomusicologists in Africa have found music grounded in move-

ment, embedded in culture, and not focused on sound; this is the general case across cultures

(Agawu, 2003, Ch. 5), including in Western music.

3.4 Articulation

Having defined timbre primarily as perceived articulation, we examine the articulation of

words as discrete symbol sequences. is will complete the context required for the practi-

cal connection between timbre and computation that concludes this chapter.

We have already examined the use of symbols to notate positions of articulators in the vo-

cal tract, as well as the related issues of embodiment and mental imagery through chapter 2.

Articulation of words is in theory a simple case of moving from one position to another, but the

timing and phrasing of articulation forms an additional, analogue channel of prosodic commu-

nication. Furthermore physical constraints lead to interactions between points of articulation
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known as co-articulation, a challenge for computational speech recognition.

3.4.1 Rhythm in Spee

We saw Patel (2007) draw a structural connection between music of the tabla and speech in

§3.2. Patel goes further in the same volume with research comparing timing in speech with

music performance. In speech research, a dichotomy was long accepted dividing languages

into stress-timed and syllable-timed languages. It was generally accepted that stress-timed lan-

guages tend towards equal duration between stressed syllables, and syllable-timed languages

tend towards equal duration between every syllable (isochrony). However, cracks appeared in

this theory when agreement could not be met on which languages were which. When comput-

ers allowed measurements unaffected by hidden bias, it became clear that the stress/syllable

timing dichotomy had no basis in the cold reality of the sound signal – no languages have

isochronous timing.

e distinction between stress- and syllable-timing was however saved, or perhaps re-

placed, by Ling et al. (2000), through introduction of the normalised Pairwise Variability Index

(nPVI). is provided a measure for quantifying something that was intuitively felt, but falsely

aributed to stress/syllable timing. As the name suggests, nPVI measures the “degree of con-

trast between successive durations in an uerance” (Patel, 2007, p. 131), with a higher nPVI

indicating greater contrast between neighbouring durations, and a perception of stress rather

than syllable timing. In his search for correspondences between music and language, Patel

applied the nPVI to music. Unlike speech, much music is isochronous, but by applying nPVI

to both speech and music, Patel found that relationships could be found in the non-periodic

structures of both. In particular, that cultures with spoken languages with a higher nPVI had

a style of playing music that also had a higher nPVI. Because notes are normally played much

faster than syllables are spoken, this is an inconclusive result, but does support a universal

link between musical and prosodic expression. Furthermore, in certain cases this link is made

explicit and undeniable, as we will see in the following section.

3.4.2 Sound poetry

Sound poetry is an artform closely related to the use of vocable words, in that speech is used

for its timbral quality rather than as a linguistic medium. ere is no reference to another

instrument, instead aention is turned solely on the expressive abilities of the vocal tract itself.

Among the most celebrated sound poems is the Ursonate by Schwiers (1932), with themes

introduced, explored and expounded upon through four movements over twenty nine pages.

Only non-lexical words are used, although the work includes instructions to recite the poem
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with German intonation.

e practice of sound poetry has related forms in music. For example the Italian composer

Luciano Berio’s Sequenza III is a vocal piece featuring muerings, clicks and shouts of the

female voice, notated with a unique system of symbols including vocables. emanipulation of

the voice is taken to different extremes in human beatboxing, which emerged from the Hip Hop

genre. Beatboxers employ extended vocal techniques to produce convincing impersonations

of drum machines and bass lines (Stowell, 2008). Beatbox rhythms may be notated with a

system of jelled vocables called standard beatbox notation (Tyte, 2008), where wrien syllables

represent the different sounds. Although the notation is vocable, beatboxers generally intend

to produce sounds that do not suggest a vocal source. Beatboxers anecdotally report that their

hand gestures help them do this, imagining instruments in a spatial arrangement in front of

them, and moving their hand to find the different timbres of their voice; a mapping from space

to articulation.

3.4.3 Words in Music Tenology

We have seen that vocable words are used across diverse music cultures. However at certain

points, music culture has embraced technological advance changing how music is conceived.

is includes the development of staff notation, a form of musical literacy, changing the way

music is composed, taught and distributed. More recently, electronic and computational tech-

nology has provided radically newways of describing musical sounds, particularly through un-

derstanding of the frequency domain and the development of new analogue and digital sound

synthesis methods. In all these cases the result has been new music activity signalling a move

away from oral tradition. In the case of staff notation vocable words have been replaced with

notation focused on pitches, and in the case of synthesis the transmission of music has moved

to tape, disc and computer networks. In the case of electronic dance music, human movements

are oen factored out through quantisation, normalising input data so that events fall into a

precise, coarse grid. If the composer feels that the result is too robotic, human-like articula-

tions are then synthesised, adding subtle time phrasing to events to give ‘human feel’ through

performance rules (e.g. Friberg et al., 2006). We can say that for some popular computer music

interfaces, control over the kind of expression that we have compared to prosody is abstracted

away.

Although in some cases technology has replaced use cases for vocables, in others it has

blurred the distinction between vocable words and the instrumental sounds they evoke. Indeed

it has ever been thus; the Jew’s harp, one of the world’s oldest instruments, locates a reed

inside the mouth, which is twanged while the mouth is articulated, allowing the musician to
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create timbral expressions based on vowel formants. A more recent technological counterpart

to the Jew’s harp is the vocoder, which when applied to speech imposes articulations of the

vocal tract upon another sound source, thus allowing any instrument to ‘speak’. We may also

consider Microphone (§2.8) in this light. In such cases a spoken vocable word is not a symbolic

representation signifying another sound, but is the sound itself.

Computer music technology has employed a wide range of human articulations in the spec-

ification of sound. Many alternate means of articulating a sound to a computer system have

been developed, with many hundreds of examples in the annals of the New Interfaces for Music

Expression conference. Gestures of the hands are sonified to shape timbre, equivalent to the

vocal articulation of words, especially when we consider sign languages of the Deaf (§2.7).

e voice is a recurrent theme in the control of new music interfaces, hardly surprising as

the vocal tract evolved to support articulations of great complexity, for the purpose of com-

munication (Boer, 2010). We discussed the bistability of auditory and speech perception in

§3.1 in relation to sine-wave speech, and this bistability has itself been treated as a musical

medium. Jones (1990) describes how he leads the listener to perceiving non-speech as speech,

and vice-versa, through timbral manipulation with the CHANT soware (Rodet et al., 1984).

Speech synthesis has also featured as a source of musical timbre in electronic dance music, for

example the largely unintelligible singing synthesis soware wrien by Chris Jeffs for use in

his compositions under the “Cylob” moniker (Jeffs, 2007).

Perhaps a central problem underlying new music interface research is that composers need

to describe sounds in ways which have some connection to the outside world. Reflecting on the

above, we propose that one answer is to build models of human perception into soware, so

that the soware may plausibly relate sounds to experience, as Wessel (1979) aempted with

some success using MDS (§3.3.1). An alternative approach of building physical models, and

controlling them with discrete symbol systems analogous to phonetics, is introduced in the

following section.

3.5 Vocable synthesis

Vocables are words which musicians use to represent instrumental articulations (§3.2). Vocable

synthesis then is the use of physical modelling sound synthesis in this process, to automatically

render words into timbre.

Pioneering research into voice-control of synthesisers with vocable words is introduced by

Janer (2008), where syllables are sung into a microphone and the resulting sound signal ana-

lysed and mapped to instrumental parameters. is work is inspired by the tradition of scat
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singing vocables in Jazz culture. Scat syllables are not jelled but improvisatory (§3.2), and per-

haps as a result Janer is interested not in whi syllables are sung, but how they are sung. As

such he uses a digital computer to translate from one analogue form to another, a similar ap-

proach to the Acid Sketching and Microphone projects introduced in chapter 2; the underlying

process is digital, but in terms of inputs and outputs it is perceived as a continuous mapping.

Janer’s approach allows realtime use, where a singer’s syllables are detected, analysed and re-

synthesised on-line. e result is a system which is very easy for singers to learn hands-on,

through use.

e approach to vocable synthesis introduced here differs from that of Janer, in that we

consider words in wrien rather than spoken form. at is, we use words for their discrete

phonetics rather than analogue prosody, so that we may translate from a discrete form to a

continuous one. e motivation for taking this approach is to provide a representation of

timbre for live coders (§6.8), computer musicians who notate music in the digital domain under

tight time constraints. Such musicians are oen driven to specify large synthesis graphs to

describe synthetic timbre, and so the promise of instead describing complex timbres with short

words should be very aractive.

For vocable synthesis to be usable, it should include a coherent mapping, with a perceivable

connection between symbols and sound categories. is is facilitated through the articulation

of a computer model of an analogue sound source. e use of physical modelling synthesis

promises that even a naive listener can perceive time variance of perceived audio features as

physical movement. e musician then describes articulation with symbols, which the listener

experiences through the music of timbre. e aim is that for the musician, the experience of

using vocable synthesis should feel as natural as using onomatopoeia in spoken words.

3.5.1 Babble - vocable Karplus-Strong synthesis

An early implementation of vocable synthesis was introduced by the present author (McLean,

2007), and since adapted into the artwork Babble, commissioned in 2008 by the Arnolfini gallery

in Bristol, accessible at http://project.arnolfini.org.uk/babble/. is artwork was

inspired by sound poetry (§3.4.2), in which speech is used as structured sound within a poetic

composition, rather than as a linguistic medium. e aim for this was to bring the aention of

participants to the paralinguistic connection between symbols and sound.

In Babble, the consonants and vowels map to different aspects of a physical model. is is

analogous to a system of phonetics, but is not intended as an approximation of the phonetics of

a natural language. In particular, this is not intended to be a system for speech synthesis, but

rather a system for speech-like composition of sounds. Similar results could have been found
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by taking a speech synthesiser and ‘breaking’ it, by adjusting the parameters just outside the

point where the sound could be perceived as speech. e advantage of the Babble however is

that it uses a computationally simple model, and is therefore able to run in a web browser.

e physical model used in Babble is Karplus-Strong synthesis, a trivial model which pro-

duces surprisingly realistic synthesis of strings, by simulating wave propagation using a circu-

lar sample buffer (Karplus and Strong, 1983). Each vowel corresponds to a size of sample buffer,

analogous to the length of a physical string. A second parameter to the model is the probability

of sample values being inverted, controlling how aperiodic, or percussive the results are. Each

consonant corresponds to a different value of this parameter. at vowels and consonants con-

trol different aspects of the model is analogous to the organisation of the International Phonetic

Alphabet (Ladefoged, 1990), where vowels relate to mouth shape and pulmonic consonants to

the place and manner of articulation (§2.7). In addition, to give the sound a speech-like quality,

a formant filter is applied to the synthesis, which is also controlled by the vowels.

ewords typed into the online interface were recorded, although participants were able to

opt-out with a privacy mode. From the resulting logs over three years of use it would seem that

the work has been successful in bringing participants to aend to musical rather than lexical

features of their words. Sessions oen begun with meaningful passages, but quickly turned to

‘nonsense’ syllables, such as the following short excerpt, shown with time-stamps from the log

file:

[2009-12-05 07:20:29] this really makes some interesting noises

[2009-12-05 07:20:55] ko doo ko doo - ko doo ko doooiiiT!

[2009-12-05 07:21:07] ko doo doo - ko doo ko doooiiiT!

[2009-12-05 07:25:14] ntdedvoxi hso - - lbpxuerohzyi - - jolkui

While Babble is successful as an artwork, and shows promise as an approach of timbral

control, the range of expression by the two parameters of the Karplus-Strong model is too

limited to meet the needs of a musician. For this purpose, vocable synthesis was re-applied to

a more complex physical model.

3.5.2 Mesh - vocable waveguide synthesis

eMesh vocable synthesis system is an extension of Babble, towards a greater range of timbre.

It uses waveguide synthesis (Van Duyne and Smith, 1993) which is inspired by Karplus-Strong

synthesis, but uses bi-directional delay lines. ese waveguides are connected together to sim-

ulate strings, tubes, surfaces and volumes of arbitrary complexity, within whatever the current

limits of on-line computation are. Mesh models a drum head as a two dimensional mesh of

waveguides, using a triangular geometry for maximal accuracy (Fontana and Rocchesso, 1995).
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e drum head is excited through interaction with a simulated drumstick, using a mass-spring

model developed by Laird (2001). e drum head has parameters to control the tension and

dampening of the surface, and the drumstick has parameters to control its stiffness and mass.

e drumstick is thrown against the drum head with parameters controlling the downward

velocity, starting x/y position and the angle and velocity of travel across the drum skin.

Table 3.1: Mapping of consonants to mallet property (columns) and movement relative to drum head (rows).

heavy stiff heavy so light stiff light so
across q r y s
inward c m f w

outward k n v z
edge x d t b

middle j g p h/l

Table 3.2: Mapping of vowels to drum head tension (columns) and dampening (rows).

tense loose
wet i u

a
dry e o

As with Babble, vocable words for Mesh are composed from the 26 leers of the modern

English alphabet. e consonants map to the drumstick and movement parameters, and vowels

to the drum head parameters, shown in Tables 3.1 and 3.2.

As an example, consider the following articulation:

Hit a loose, dampened drum outwards with a heavy stiff mallet, then hit the
middle of the drum with a lighter mallet while tightening the skin slightly and
finally hit the edge of the skin with the same light mallet while loosening and
releasing the dampening.

is above may be expressed with the single vocable word:

kopatu

Polymetric vocable rhythms may be described using syntax inspired by the Bol Processor

soware (Bel, 2001). is was later rewrien for use in the string parser of the Tidal paern

DSL (Domain Specific Language), described in detail in §4.5.4.
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3.5.3 Vocable manipulation and analysis

Our system is a discrete representation, but is defined in relation to simulated continuousmove-

ment. is means that we may musically manipulate vocable words as either sequences of

discrete symbols or as continuous movements.

In the discrete domain, we have a wide range of techniques from computer science available

to us. For example we may analyse sequences of vocables using statistical techniques such as

Markov models. Such an approach to modelling structures of vocable rhythms in order to

generate rhythmic continuations was introduced in earlier work (McLean, 2007). We may also

use standard text manipulation techniques such as regular expressions (regexes). Regexes are

wrien in concise and flexible language allowing general purpose rule-based string matching

(Friedl, 2006). A regex parser is embedded in Mesh, allowing operations such as the following:

~%3=0 /[aeiou]/to/ fe be

is replaces the vowels of every third vocable with the string “to”, resulting in the follow-

ing sequence:

fto be fe bto fe be

Mesh vocables are direct mappings to the simulated physical space of a drum and its ar-

ticulation. It is therefore straightforward to operate in a simulated analogue domain, in order

to perform geometrical analyses and manipulations. For example combining vocables in poly-

phonic synthesis is straightforward, and implemented in our current system as follows. As

consonants control the movement and mallet material, we allow two consonants to be synthe-

sised concurrently simply by using multiple mallets in our model. Currently we allow up to

five active mallets per drum, allowing five consonants to be articulated at the same time. As

vowels control the properties of a single drum head, we combine them simply by taking the

mean average of the values they map to.

Wemay exploit both symbolic and geometric vocable representations in one operation. For

example we could estimate the perceptual similarity of two vocable words of different lengths

with an approach similar to the symbolic Levenshtein edit distance (Levenshtein, 1966), with

edits weighted by phonemic similarity in the simulated analogue domain.

3.6 Discussion

In this chapter we have studied words as sequences of symbols which notate discrete points of

articulation, and therefore analogue movements between them, in writing, speech and song.
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For humans, words evoke movement, a bridge between discrete and analogue modes that lies at

the heart of our experience. We have defined musical timbre in terms of imagined movement,

and noted the use of vocable words in describing movements within musical tradition. While

noting that words are generally treated as shapeless tokens in computer programming, we have

proposed a use of words in notating timbre within computer programs, allowing treatment of

timbre through both digital and (simulated) analogue manipulations.
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us far we have been occupied with issues of symbolism and movement, taking an embodied

view of discrete computation integrated with analogue experience. In the present chapter we

will examine the higher order concerns of the design of programming languages for computer

music. Firstly, we will tackle the issue of what we mean by the word language in this context,

by relating natural and computer languages. We will then approach the meaning of mean-

ing in computer music, this time by relating natural language with music. We then examine

notions of abstraction in programming language design, by contrasting imperative and declar-

ative approaches. is will lead into the introduction of Tidal, a language designed for the live

improvisation of musical paern.

4.1 Natural and Computer Language

Comparing natural and computer language brings up thorny issues. How does writing a pro-

gram compare to writing a poem: does it even make sense to speak of these activities in the

same terms? ey can at least in an arts context; computer language poetics has been a running

theme in soware arts discourse (Cox et al., 2000, 2004). Indeed computer programs were first

conceived in terms of weaving (§1.1), and perhaps the same is true of writing, as the word text

is a dead metaphor for cloth:

An ancient metaphor: thought is a thread, and the raconteur is a spinner of
yarns – but the true storyteller, the poet, is a weaver. e scribes made this old
and audible abstraction into a new and visible fact. Aer long practice, their work
took on such an even, flexible texture that they called the wrien page a textus,
which means cloth. (Bringhurst, 2004, p. 25)

We can also relate natural and computer languages in a more scientific context. ere is

a great deal of family resemblance between programming and natural languages, in syntax
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rules, semantics, words, punctuation, and so on. eir similarity is also reflected in statistical

measures, for example the words of natural and programming languages both conform to a

Zipfian distribution, and comparable long range power law correlation (Kokol and Kokol, 1996).

e Chomsky hierarchy organises language grammars according to their expressive power,

in terms of recursion in production rules (Chomsky, 1956). e grammars for programming lan-

guages are context-free, where production rules specify a single symbol with a corresponding

string of symbols which may recursively include nonterminal symbols with their own produc-

tion rules. e grammar rules for natural languages remain an active area of research, but are

also considered to be almost entirely context free (Pullum and Gazdar, 1982). In these syntac-

tical terms then, both programming and natural languages have the same expressive power.

However language is not defined by its syntax alone, but also its semantics and pragmatics.

In §4.2 we will examine this issue from the viewpoint of cognitive semantics, which strongly

de-emphasises the role of syntax in language.

Another test of expressive equivalence between languages is translatability, however this

is somewhat problematic as natural languages have close ties with their modes of expression.

For example, a joke may be told in British Sign Language (BSL) that is untranslatable to English,

if the joke included reference to similarities between signs. Despite the existence of untrans-

latable phrases both BSL and English are natural languages with equivalent expressive power

(Suon-Spence andWoll, 1999). Furthermore the same difficulty of translationmay occur when

taking a spoken joke and trying to write it down using the same language – oen jokes are all

in timing, intonation or sound symbolism that is lost on the page. e question then is not

whether it is possible to find phrases which are not translatable, but to what extent phrases

generally are translatable.

Leaving natural languages aside for the moment, translating between computer languages

is certainly possible, and may be done either literally or idiomatically. We may translate a

program from C to Perl literally, by translating each control flow and data structure, preserving

the structure of the original program. Alternatively we may adapt a C program to the idioms of

Perl, by using Perl’s syntax for data structures and string handling. However because Perl is a

higher level language the inverse of translating Perl code to C is more difficult, as C lacks many

of Perl’s language features. Likewise, it is fairly straightforward to translate from programming

languages to natural languages, and indeed this is whatwe dowhen explaining how source code

operates to another programmer. Translating from natural languages to computer languages

is however much more challenging.

“When Joana Carda scratched the ground with the elm branch all the dogs of
Cerbère began to bark, throwing the inhabitants into panic and terror, because
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from time immemorial it was believed that, when these canine animals that had
always been silent started barking, the entire universe was nearing its end.” (Sara-
mago, 2000, p. 1)

e above quote stands as the first sentence of the novele Stone Ra by José Saramago,

Nobel Laureate for Literature. It was originally wrien in Portuguese; the above is taken from

the authorised English translation. In all his novels, Saramago limited his punctuation only

to the comma and full stop, which allowed him to compose long sentences constructed as

paerns of sound, with distinctive rhythm (Saramago, 2000, translator’s note). He constructed

his sentences as a continuous flow, experimenting with timbre and resonance, treating words

as sounds. e translator’s great challenge then is to translate the music of this text as well as

the linguistic content. In this case it seems that this difficult task has been achieved to a large

degree, as Saramago approved this translation.

We find Peter Naur, the Turing Award winning computer scientist, to be in agreement with

Saramago in considering language a primarily spoken form. He makes this point by transcrib-

ing one of his talks as it was spoken, and without punctuation, this time using only em dashes

to indicate pauses. e following is an excerpt:

“e other notion – well – language – that is when one talks – and if one says
this one will immediately be taken to task – he has not gone to school – doesn’t he
know – language cannot be a when – shame – it must be a thing surely – and we
are thus tangled up into the claim that there are concepts denoted by the words”
(Naur, 1992a, p. 524).

e similarity between this and Saramago’s writing style is striking, although Naur’s tran-

scription is at times rather harder to read, with repetitions and transgressions included.1 But

this difficulty is Naur’s point, to demonstrate the difference between spoken language and writ-

ten text. As he tries to get across in the above quote, words do not denote precise, external

concepts, which are rather held by individuals as mental imagery. In this he is in agreement

with the point of view of cognitive linguists such as Barsalou, Gärdenfors, Lakoff and Paivio

related in chapter 2. Language is not a thing that is wrien down, but rather a habit or activity

that is done; meaning is personal, and not containable within grammar rules. Naur asserts that

in order to really understand a speaker’s words, you must absorb their language on a number of

topics, so that you may begin to understand their frames of reference, and pick up the paerns

behind what they are trying to say.

Naur (1992b) applies all this to our understanding of programming languages in his paper

“Programming Languages are not Languages – Why ‘Programming Language’ is a Misleading

1As an added complication, Naur’s original talk was in Danish, although he asserts his translation is useful in
representing a talk that might have happened.
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Designation.”, this time in conventionally wrien English. His conclusion is that Programming

Language is a “special, limited part of the linguistic possibilities, deliberately designed to cater

for certain limited situations and purposes.” From this we understand that while Naur finds that

the term programming language is misleading, he still believes that programming language is a

certain, specialised area of language. is has echoes of Wigenstein on formalised language:

“Don’t let it bother you that languages (2) and (8) consist only of orders. If
you want to say that they are therefore incomplete, ask yourself whether our own
language is complete – whether it was so before the symbolism of chemistry and
the notation of the infinitesimal calculus were incorporated in to it; for these are,
so to speak, suburbs of our language. (And howmany houses or streets does it take
before a town begins to be a town?) Our language can be regarded as an ancient
city: a maze of lile streets and squares, of old and new houses, of houses with
extensions from various periods, and all this surrounded by a multitude of new
suburbs with straight and regular streets and uniform houses.” Wigenstein (2009,
18)

It seems that even though there are ways in which programming languages are not lan-

guages, they at least operate within the landscape of language. How then, could Saramago’s

text, in its speech-like form, be translated into the language suburb of source code? Translit-

eration is hardly possible, and so we must look to translate particular aspects of the situation

represented in the text. One approach would be to model discrete entities and relationships in

the text, of the town, its dogs, and the dependency of the existence of the town on the dogs’

behaviour. A human reader would then get some sense of what is wrien in this programming

language either by reading it, or perhaps by using it within a larger computer program. Alter-

natively we could try to capture a sense of expectation and dread within a temporal structure,

and output it as sound, thereby creating a musical theme. is kind of translation is analogous

to the live coding of sound tracks relating the narrative structure of silent films, practised by

Rohrhuber et al. (2005).

We argue then that translation from natural language to programming language is possible,

as long as one accepts that languages with strengths designed for particular purposes also have

particular limitations. For example, programming languages are designed to be typed and not

spoken, and so bringing the spoken prosody of language (§3.4) directly to computer language

seems impossible (although see vocable synthesis, §3.5). However, the same is true of some

natural languages. Nicaraguan Sign Language is a particularly interesting case, emerging nat-

urally from a Deaf community of young school children over two decades – a span comparable

with the overall development of computer language. It has no spoken or indeed wrien form,

but does already have complex, spatial grammar, and of course prosodic rhythm, being based

on movements of the body.
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Despite the lack of spoken form, code does have its own spatial features, as we will see

in later discussion of secondary notation (§5.1). A programmer also has choice about how to

express an algorithm, to a degree depending on the language in hand. A strong example is Perl,

which has the rather unwieldy moo ere is More an One Way To Do It (TMTOWTDI).

Indeed LarryWall, the creator of Perl, has a background in linguistics, and lists several features

that Perl borrows from natural language in his 1995 on-line essay “Natural Language Principles

in Perl”. As well as the freedom of TMTOWTDI, it includes Perl’s manner of learning, its

ambiguity, import of features from other languages, topicalisation and pronominalisation.

Perhaps the key difference between programming and natural language is that the former

is formalised and abstract, whereas the laer has developed with a closer relationship to its

speakers. Words in a natural lexicon are grounded in human experience of movement and re-

lationships of the body in its environment. Computer languages are not based around these

naturally developed words, but we may still maintain the same semantic references for human

readers, by using those words in the secondary notation of function and variable names, or

even by working with an encoded lexicon as data (such as WordNet; Fellbaum, 1998). In do-

ing so we borrow from the lexicon of a natural language, but we could just have easily used

an invented lexicon such as that of Esperanto. Regardless, a computer program is ultimately

grounded in the outside world when it is executed, through whatever modalities its actuators

allow, usually images, sound and/or movement. At the point which a program is executed, it

becomes clear that the its source code is full of a particular kind of linguistic reference known

as performative uerances. Due to the power that humans wield over computers to do their

bidding, by describing an action in a computer language, we cause it to be performed.

Natural and computer languages are developed under different pressures with very dif-

ferent results. However they have sufficient family resemblance to both be considered to be

aspects of human language activity. By appraising the differences between natural and com-

puter languages, we may look for ways in which features of natural languages could be ap-

propriated for use in programming languages for the arts, an approach we have demonstrated

with Vocable Synthesis (§3.5).

4.2 Music, Language and Cognitive Semantics

We have already seen some of the complex relationship between music and language, while

examining integration between the dual codes of language andmental imagery in chapter 2, and

arguing in chapter 3 that timbral and prosodic articulation share a grounding inmovement. e

Chomskian linguistic notion of semantics as it is generally understood excludes any notion of
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musical meaning. e hierarchical structure of music holds some similarity to linguistic syntax,

but the lack of reference to a real or imagined world makes a semantics of music untenable

(Wiggins, 1998). As a result, discussion of meaning in music oen lacks a formal underpinning,

resulting in a broad spectrum of parallel discussions in the literature, each under its own terms

(for a broad review see Cross and Tolbert, 2008). However the alternative view of conceptual

semantics provided by the theory of Conceptual Spaces (§2.2.5) puts things in a rather different

light. In the following we show that unlike Chomskian semantics, Gärdenforsian conceptual

semantics is applicable to music as well as language, by summarising its main tenets in relation

to music.

“Semantic elements are constructed from geometrical or topological structures (not sym-

bols that can be composed according to some system of rules).” In other words, semantic

meaning is primary to the conceptual, analogue level, and not the discrete level as with Chom-

skian semantics. e common view in music theory characterises musical structure as being

discrete and syntactic (Lerdahl and Jackendoff, 1983), however conceptual semantics allow us

to consider music structure as spatial and geometric in addition. In the case of music of timbre

(§3.3.3), we claim that conceptual semantics is the primary structure.

“Semantic meaning is a conceptual structure in a cognitive system.” Meaning does not ex-

ist through links to the world (or a possible world), but in the body (and in particular, the brain),

of an individual. However the conceptual structures of a group of individuals may reach ac-

cordance through communication. We can consider a musical improvisation in terms of such

a process of communication, where two or more improvisers begin with individual concep-

tual structures at the beginning of a piece, which are manipulated towards accordance and

discordance during a performance. Of course while situated in an individual, the conceptual

structures are informed by previous performances and higher cultural effects such as musi-

cal genre. It is also possible, through aberration or inference, that new conceptual structure

is created during an improvisation that did not exist at the beginning (Wiggins, 2006b). Such

conceptual structure could be deemed valuable and kept for reuse in future improvisations. In

such a case we can say that an improvisation created new meaning, and was therefore a par-

ticularly creative performance. is manner of creative search is discussed in greater detail in

§6.3.

“Conceptual structures are embodied (meaning is not independent of perception or of bodily

experience).” is tenet connects cognitive semantics to its roots in theories of embodied

cognition. Instruments and the voice require movements of the body in order to make sound,
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and the constraints and vagaries of motor action within the tight feedback loop of action and

reaction are an important component of musical improvisation (Pressing, 1984, 1987). However

the influence of bodily experience goes beyond actual motor action to suggest that semantic

meaning is dependent on motor and perceptual circuits in the brain.

“Cognitive models are primarily image-sematic (not propositional). Image-semas are

transformed by metaphoric and metonymic operations (whi are treated as exceptional

features on the traditional view).” Image schemata are abstract diagrams of spatial re-

lationships and actions, representing notions such as ‘over’, ‘containment’ and ‘araction’

(Lakoff, 1997). A metaphorical operation is where two concepts are related via common image

schemata, most commonly relative to orientations such as ‘UP’ (§2.2.6). It is through metaphor-

ical structure that a conceptual system can be grounded in perception and action, yet represent

meaning abstract from it.

“Semantics is primary to syntax and partly determines it (syntax cannot be described in-

dependently of semantics).” is is another tenet in opposition to the widely held view of

Chomskian linguistics, where syntax is primary and independent of semantics. It implies that

when composing a piece of music, the cognitive semantic structure is more important than

grammatical rules. at is, any grammatical rules underlying a piece of music are placed in

support of the geometry of the semantic structure, rather than a precursor for it (Forth et al.,

2010).

“Concepts show prototype effects (instead of following the Aristotelian paradigm based on

necessary and sufficient conditions).” e Aristotelian paradigm has not been taken seri-

ously for several decades and current theories of concepts do not depend upon it (Murphy,

2002, p.16). e subscript to this tenet therefore is weakened by not showing consideration for

theories competing with the prototype view such as those of the exemplar view and knowl-

edge approach (Murphy, 2002, pp. 41–71). However prototype effects, such as a robin being

judged a more typical bird than a penguin, are indeed easily accounted for within the theory of

conceptual spaces. Gärdenfors does so using the Voronoi diagram (Okabe et al., 2000), where a

conceptual prototype is a Voronoi generator for the geometrical regions of conceptual proper-

ties. Prototype effects are observed in music, for example where pieces are judged as greater

or less typical examples of a musical genre. In the Voronoi diagram of genres, a typical piece

would be near to the region’s generator, and a difficult to define or ‘crossover’ piece would be

near a boundary between two or more genres. In practice, musical genres are impossible to

define universally, which points again to the relativist position stated in the first tenet.
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In summary, in Chomskian terms music cannot be understood in terms of semantics, only

syntax. However if one is prepared to take a Gärdenforsian view, a discussion of musical

meaning can proceed with a formal underpinning, where meaning exists within individuals’

conceptual structures of music, within the structures shared by the members of a music culture,

and within the grounding relationships between musical structure and universals of human

perception and movement.

4.3 Declarative vs Imperative

Declarative and imperative programming are competing paradigms, an opposition that raises

interesting issues for the time-based computer arts. Declarative programming is the coding

of what should happen, and imperative programming is the coding of how something should

occur. is distinction is frequently used, and gives a sense of what is meant, but lacks practical

detail. is situation is reminiscent of that of the definition of timbre inmusic §3.3; an important

distinguishing featurewithin a domain, that is oen defined in vague and sometimes conflicting

terms.

e use of computer language can be broadly divided into the description of algorithmic

control, and of problem logic (Kowalski, 1979). Imperative programming languages support the

former, where programmers describe a method for solving a problem, rather that the problem

itself. Declarative programming languages support the laer, allowing programmers to focus

on the description of problems, by leaving the interpreter to find the algorithmic solution. Well-

known examples of declarative programming languages include the logic language Prolog, the

database query language SQL, and the string matching language Regular Expressions (ch. 2).

ese are as close as we get to the declarative promise, of programmers concerning themselves

only with what they want to do, and not how it should be done. is promise holds for simple

examples, but unfortunately hardly at all in practice. SQL database query optimisers are in

constant development, and programmers must keep abreast of exact implementation details,

structuring their queries and indexing their datasets in a way that allows their SQL queries to

operate efficiently. Upgrading to a new version of an SQL engine is then a serious maer, as

optimisations for general cases may have led to serious regressions in edge cases. Likewise, reg-

ular expressions must be carefully craed for a particular interpreter, where implementation

details such as backtracking or determinism can impact computational complexity by several

orders of magnitude (Friedl, 2006). Prolog programmers have much the same problem, classi-

cally requiring manual search space reduction by inhibiting backtracking, a technique known

as the cut (Sterling and Shapiro, 1994).
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While the imperative frequently intrudes, declarative programming styles nonetheless

maintain a certain clarity of expression, giving high level descriptions largely separate from

implementation details. is is related to the idea of purity in pure functional languages such

as ML (Milner et al., 1990), where functions have no side-effects. is means a pure functional

program cannot interact with the outside world while it is executing, beyond the singular, or-

derly flow of input and output. Haskell is a pure functional programming language from the

ML family, but gets around this limitation through modelling side-effects by chaining together

pure functions. e result is a declarative description of an imperative program, which the

interpreter then takes care of executing.

Another distinction made between declarative and imperative programming (e.g. Dijkstra,

1985) is concerned with the passing of time. In declarative programming, time is a concern of

optimisation, to be separated as much as possible from the problem description. In imperative

programming one statement follows another, describing a sequence of operations, each with

its own time ‘cost’. In the general case this makes a great deal of sense; the imperative ‘how’

approach is concerned with algorithms as programmes of work over time, and the declarative

‘what’ approach with logical relationships abstract from time. However within our theme of

the design of programming languages for artists, the focus on time is problematic. In particular,

when we consider the time-based arts, the unfolding of an algorithm over time is both the

imperative how and the declarative what. In this case, the distinction between declarative and

imperative programming appears to not apply, as the particular operation of how an algorithm

works has strong influence over what we experience. If the distinction is to make any sense in

this context, it must be defined carefully.

We argue that a declarative approach to programming is indeed desirable for artists. We

define it however not in general terms, or even relative to algorithms, but as the closeness

of mapping (§5.1) of the programming notation to the target domain. If a programmer is only

interested in logic, then a declarative approach is to choose a programming language that takes

care of how a program is solved over time. However if our programmer is interested in the

problem of how to complete a piece of music, then they are concerned with how the solution

is arrived at as well as the problem; the how is the what. A declarative approach in this case

would then be concerned with how events are ordered to reach a musical resolution. is

does not however mean precisely specifying an algorithm, certain aspects of operation may be

musically inconsequential, and so may be specified in an ambiguous manner.

Our characterisation of declarative programming is closely related to the concept of Do-

main Specific Language (DSL) (van Deursen et al., 2000). To a limited extent, a straightforward

programming library is DSL, in that it provides functions particular to a domain. However in
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a fuller sense, DSL goes further to provide higher order means of abstraction and combina-

tion tailored to the target domain, allowing programmers to find the level of abstraction that

best mirrors the structure of their problem. For example, a computer musician working with

paerns may create language for combining functions which represent generation and trans-

formation of paern. We will approach this subject in depth in the following section, before

introducing Tidal, DSL for live coding of paern.

4.4 Domain Specific Language for Paern

When we view the composed sequence “abcabcabc. . . ” we quickly infer the paern “repeat

abc”. is inference of hierarchy is known in the psychological literature as ‘chunking’ (Miller,

1956), and aids memory of long sequences, prediction of future values and recognition of ob-

jects. Paern pervades the arts; as Alfred Whitehead (2001) eloquently puts it, “Art is the

imposing of a paern on experience, and our aesthetic enjoyment is recognition of the pat-

tern.”2 is communicates a role of paern supported here; one individual encodes a paern

and another decodes it, both actively engaged with the work while creating their own expe-

rience. In the present section we examine the encoding of paern in particular, introducing

Tidal, a computer language for encoding musical paerns during improvised live coding (§6.8)

performances.

Paern has been of great interest throughout the history of art. e paerned walls and

floors of the Alhambra in Spain are an extraordinary example, where Moorish artists have cap-

tured all seventeen types of symmetry, centuries before their formalisation by group theorists

(du Sautoy, 2008). e technological exploration of musical paern also has a long history,

extending back to well before electronic computers. For example, Leonardo da Vinci invented

a hurdy gurdy with movable pegs to encode a sequence, played back using multiple reeds at

adjustable positions, transforming the sequence into a canon (Spiegel, 1987). Hierarchies of

repeating structure run throughout much of music theory; computational approaches to music

analysis, indexing and composition all have focus on discrete musical events and the rules to

which they conform (Rowe, 2001, §4.2). From this we infer that the encoding and decoding of

paern is fundamental to music making. We review support given to musical paern making

by computer language in this light.

e literature on paern DSLs (Domain Specific Languages) is mainly concerned with

analysis of composed works relative to a particular theory of music. For example Simon and

Sumner (1992) propose a formal language for music analysis, consisting of a minimal grammar

2To our shame, these words were background to Whitehead lambasting those taking quotes out of context.

77



C 4: L

for describing phrase structure within periodic paerns. eir language allows for multidi-

mensional paerns, where different aspects such as note value, onset and duration may be

expressed together. e grammar is based on a language used for description of aptitude tests

which treat paern induction as a correlate with intelligence. Deutsch and Feroe (1981) in-

troduced a similar paern DSL to that of Simon and Sumners, for the analysis of hierarchical

relationships in tonal music with reference to gestalt theory of perception (Kohler, 1930).

e analytical perspective shown in the paern DSLs discussed thus far puts focus on sim-

ple paerns with unambiguous interpretation. We assert that music composition demands

complex paerns with many possible interpretations, leading to challenged, engaged listeners

in a state of flow (see analytic listening; Csikszentmihalyi, 2008, p. 111, and our discussion

on timbre, §3.3.3). erefore paern DSL for synthesis of music requires an approach different

from formal analysis. Motivation for the design of paern DSL for music composition is identi-

fied by Laurie Spiegel in her paper “Manipulations of Musical Paerns” (Spiegel, 1981). Twelve

classes of paern transformation, taken from Spiegel’s own introspection as a composer are

detailed: transposition (translation by value), reversal (value inversion or time reversal), rota-

tion (cycle time phase), phase offset (relative rotation, e.g. a canon), rescaling (of time or value),

interpolation (adding midpoints and ornamentation), extrapolation (continuation), fragmenta-

tion (breaking up of an established paern), substitution (against expectation), combination (by

value – mixing/counterpoint/harmony), sequencing (by time – editing) and repetition. Spiegel

felt these to be ‘tried and true’ basic operations, which should be included in computer music

editors alongside insert, delete and search-and-replace. Further, Spiegel proposed that study-

ing these transformations could aid our understanding of the temporal forms shared by music

and experimental film, including human perception of them.

Paern transformations are evident in Spiegel’s own Music Mouse soware, and can also

be seen in music soware based on the traditional studio recording paradigm such as Stein-

berg Cubase and Apple Logic Studio. However Spiegel is a strong advocate for the role of

the musician-programmer, and expresses hope that these paern transformations would be

formalised into programming libraries. Such libraries have indeed since emerged. Hierar-

chical Music Specification Language (HMSL) developed in the 1980s, and includes an exten-

sible framework for algorithmic composition, with some inbuilt paern transformations. e

Scheme based Common Music environment, developed from 1989, contains an object oriented

paern library (Taube, 2004); classes are provided for paern transformations such as permu-

tation, rotation and random selection, and for paern generation such as Markov models, state

transition and rewrite rules. e SuperCollider computer music language (McCartney, 2002)

also includes an extensive paern library, benefiting from an active free soware development

78



C 4: L

community, and with advanced support for live coding (§6.8). What all these systems have in

common is a desire to represent the structure of music in the structure of code. As such, they

adhere closely to our definition of declarative language (§4.3), working at the same level of ab-

straction of the target domain of musical paern. Inspired by this, we now move to introduce

our own paern DSL, Tidal.

4.5 Tidal

Tidal is a paern DSL embedded in the Haskell programming language, consisting of paern

representation, a library of paern generators and combinators, an event scheduler and pro-

grammer’s live coding interface. is is an extensive re-write of earlier work introduced under

the working title of Petrol (McLean and Wiggins, 2010). Extensions include improved paern

representation and fully configurable integration with the Open Sound Control (OSC; Freed

and Schmeder, 2009) protocol.

4.5.1 Features

Before examining Tidal in detail we first characterise it in terms of features expected of a paern

DSL.

Host language Tidal is a Domain Specific Language embedded in the Haskell programming

language. e choice of Haskell allows us to use its powerful type system, but also forces us to

work within strict constraints brought by its static types and pure functions. We can however

turn this strictness to our advantage, through use of Haskell’s pioneering type-level constructs

such as applicative functors and monads. Once the notion of a paern is defined in terms of

these constructs the expressive power of Haskell’s syntax becomes available, which can then

be explored for application in describing musical paern. Haskell’s syntax is very terse, thanks

in part to its declarative approach (§4.3) and notational conveniences. For example in Haskell

all functions are implicitly curried, that is all Haskell functions only take a single argument,

but may return another function that takes a further argument and so on. is allows par-

tial application to be very tersely expressed, for example we may specialise the function +

to + 1 , and map the resulting function over a list of values without explicit use of lambda;

map (+1) [1, 2, 3] . Such tersity removes barriers from the expression of ideas, and there-

fore allows a tighter creative feedback loop (§6.3).

Pattern composition In Tidal, paerns may be composed of numerous sub-paerns in a vari-

ety of ways and to arbitrary hierarchical depth, to produce complex wholes from simple parts.
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is could include concatenating paerns time-wise, merging them so that they co-occur, or

performing pairwise operations across paerns, for example combining two numerical paerns

by multiplying their values together. Composition may be heterarchical, where sub-paern

transformations are applied at more than one level of depth within a larger paern.

Time representation Time can be conceptualised either as linear ange with forward order

of succession, or as a repeating cycle where the end is also the beginning of the next repetition

(Buzsaki, 2006). We can relate the former to the laer by noting that the phase plane of a sine

wave is a circle; a sine wave progresses over linear time, but its oscillation is a repeating cycle

as shown in Figure 7.1. Music exhibits this temporal duality too, having repeating rhythmic

structures that nonetheless progress linearly. Tidal allows both periodic and linear paerns to

be represented.

Another important distinction is between discrete and continuous time. In music tradi-

tion, time may be notated within discrete symbols, such as Western staff notation or Indian

Bol syllables, but performed with subtle phrasing over continuous time. Tidal maintains this

duality, where paerns are events at discrete time steps. However phrasing may be specified

as paerns of floating point onset time deltas (§4.6.1).

Random access Both Common Music and SuperCollider represent paerns using lazily eval-

uated lists, where values are calculated one at a time as needed, rather than all together when

the list is defined. is allows long, perhaps infinitely long lists to be represented efficiently in

memory as generator functions, useful for representing fractal paerns for example. In some

languages, including Haskell, lists are lazily evaluated by default, without need for special syn-

tax. is is not how paerns are represented in Tidal however. Lazy lists are practical for

linear evaluation, but you cannot evaluate the 100th value without first evaluating the first 99.

is is a particular problem for live coding (§6.8); if you were to change the definition of a lazy

list, in order to continue where you le off you must regenerate the entire performance up

to the current time position.3 Further, it is much more computationally expensive to perform

operations over a whole paern without random access, even in the case of straightforward

reversal.

Tidal allows for random access by representing a paern not as a list of events but as a

function from time values to events. A full description is given in §4.5.2.

3SuperCollider supports live coding of paerns using PaernProxies (Rohrhuber et al., 2005). ese act as place-
holders within a paern, allowing a programmer to define sub-paerns which may be modified later.
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Ready-made generators and transforms A paern library should contain a range of basic

paern generators and transforms, which may be straightforwardly composed into complex

structures. It may also contain more complex transforms, or else have a community repository

where such paerns may be shared. Tidal contains a range of these, some of which are inspired

by other paern languages, and others from Haskell’s standard library of functions, including

its general support for manipulating collections.

Community

“Computers’re bringing about a situation that’s like the invention of harmony.
Sub-routines are like chords. No one would think of keeping a chord to himself.
You’d give it to anyone who wanted it. You’d welcome alterations of it. Sub-
routines are altered by a single punch. We’re geing music made by man himself:
not just one man.” John Cage (1969)

John Cage’s vision has not universally met with reality; muchmusic soware is proprietary,

and in the United States sound synthesis algorithms are impeded by soware patents. However

computer music languages are judged by their communities, sharing code and ideas freely,

particularly around languages released as free soware themselves. A paern DSL then should

make sharing abstract musical ideas straightforward, so short snippets of code may be easily

used, modified and passed on. is is certainly possible with Tidal, although this is a young

language which has not yet had a community grow around it.

4.5.2 Representation

In Tidal, paerns are represented by the Pattern a data type, which is defined as follows:

data Pattern a =
Pattern {at :: Behaviour a, period :: Period}

type Behaviour a = Int → [Maybe a]

type Period = Maybe Int

is Pattern a data type is composed of two further types; Behaviour a which is a type

synonym for Int →[Maybe a] , and Period which is a type synonym for Maybe Int . ey

are accessible via their field names at and period respectively. e behaviour represents the

structure of the paern, and the period how oen it repeats, if at all.

e name of the Behaviour a type is taken from functional reactive programming nomen-

clature (Ellio, 2009; Hudak, 2000), a behaviour being the term for a time-varying value. Its

form Int →[Maybe a] is a function from Int (integer), to a list of values of type Maybe a .

81



C 4: L

e integer function parameter represents discrete time steps, and the result of the function,

[Maybe a] represents a list of events. In other words, a behaviour represents a paern as a

time-varying list of events.

Pattern and Behaviour share the polymorphic type parameter a , which is encapsulated

within Int →[Maybe a] . e type parameter a is specialised to whatever the event type of a

particular paern is, for example a paern of musical notes could be of type Pattern String ,

where pitch labels are represented as character strings, or alternatively of type Pattern Int

for a paern of MIDI numbered note events.

We have not yet explained the purpose of the Maybe type which encapsulates a . e

Maybe type is a standard feature of Haskell, and has two constructors, namely Just a and

Nothing . e reason for using it here is to allow events which do not have a value in terms

of a to be represented as Nothing . is is particularly useful for representing musical rests.

Further motivation is shown in §4.6, where Nothing is shown to have different meaning in

different situations.

As we see in the above definition, the period of a paern – the duration at which it repeats

– is represented as an Int . It is also encapsulated within the Maybe type, used for spec-

ifying aperiodic paerns. e periodic paern “abcdefgh, repeated” would have a Period

of Just 8 , and the aperiodic paern “a followed by repeating bs” would have a Period of

Nothing .

e following example shows how a paern may be constructed, in this case the integer

paern of the repeating sequence “0, 2, 4, 6”:

p = Pattern {at = λn → [Just ((n `mod` 4) ∗ 2)],
period = Just 4}

To map from the time parameter to this trivial sequence, the Behaviour simply takes the

modulo of four, and multiplies it by two.

We access events in a paern by evaluating its Behaviour function with a time value.

Continuing with the paern defined above, at p 1 evaluates to [Just 2] . As this is a cyclic

paern of period 4, at p 5 would give the same result, as would at p (-3) .

e above paern is expressed as a function over time. An alternative, recursive definition

would be more idiomatic to Haskell, in this case defining at p 0 to return Just [0] and

subsequent at p n to return the value at n - 1 plus two. However great care must be taken

when introducing such dependencies between time steps; it is easy to produce incomputable

paerns, or as in this case, paerns which may require whole paerns to be computed to find

values at a single time point.
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4.5.3 Pattern generators

A paern would not normally be described by directly invoking the constructor in the rather

long-windedmanner shown in the previous section, but by calling one of the paern generating

functions provided by Tidal. ese consist of generators of basic repeating forms analogous

to sine, square and triangle waves, and a parser of complex sequences. e following is the

definition of Tidal’s sine function, which produces a sine cycle of floating point numbers in

the range −1 to 1, with a given period:

sine :: Int → Pattern Double
sine l = Pattern f (Just l)

where f n = [Just ( sin (
fromIntegral n ∗ (pi / fromIntegral l ∗ 2)

))
]

e sine1 function does the same as sine but in the range from 0 to 1. It is defined

relative to sine , by using the functor map operator <$> . e values of a paern are mapped

over a scaling function in the following definition:

sine1 :: Int → Pattern Double
sine1 l = ((/ 2.0) ◦ (+ 1.0)) <$> sine l

We can use this functor mapping because Pattern is an instance of Haskell’s Functor

class, with the following definition:

instance Functor Pattern where
fmap f (Pattern xs p) =

Pattern (fmap (fmap (fmap f)) xs) p

is definition simply maps over each of Behaviour ’s enclosing types. is is all that

needs to be done, because Haskell already defines the function application, Maybe and list

types as instances of the Functor class.

e following is an example of the sine1 function in use, here rendered as a sequence of

grey values by the drawGray function:

drawGray $ sine1 16
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Tidal is designed for use in live music improvisation, but is also applicable to off-line com-

position, or for non musical domains. We take this opportunity to illustrate the following

examples with visual paerns, in sympathy with the present medium. For space efficiency the

above cyclic paern is rendered as a row of blocks, but ideally would be rendered as a circle,

as the end of one cycle is also the beginning of the next.

Linear interpolation between values, somewhat related to musical glissandi, is provided by

the tween function:

drawGray $ tween 0.0 1.0 16

4.5.4 Parsing strings into polymetric patterns

A paern may also be specified as a string, which is parsed according to the context, as defined

by Haskell’s type inference. In the previous two examples we have used the drawGray function

which requires a paern of floating numbers, in particular one of type Pattern Double . In

the following example the draw function requires a colour paern, and so a parser of colour

names is automatically employed by the function p .

draw (p "black blue lightgrey")

anks to the string overloading extension to Haskell provided by the Glasgow Haskell

Compiler, a string is automatically coerced into a Paern using the function p . is is so that

p does not need to be explicitly specified:

draw "black blue lightgrey"

e parser allows terse description of polymetric rhythms, inspired by the syntax of the Bol

Processor (Bel, 2001). We will first describe the parser in detail before moving on to examples,

which the reader may wish to refer to in advance.

e parser rules are implemented using Haskell’s Parsec library, but are illustrated in the

following using Extended Backus-Naur Form (EBNF). We diverge from standard EBNF to pa-

rameterise rules, in order to show that the four different parsers operate in the same manner,

but with differing rules to parse atomic events within rhythms.
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Four different parsers are created by parameterising general parser rules with a rule to

match an atom, i.e. a rhythmic event at the lowest level of granularity:

colourRhythm = rhythm(colourname) ;

doubleRhythm = rhythm(double) ;

stringRhythm = rhythm(string) ;

intRhythm = rhythm(int) ;

boolRhythm = rhythm(bool) ;

colourname = "blue" | "red" | "green" | ... ;

bool = "t" | "1" | "f" | "0" ;

ese parsers allow Tidal to parse Pattern s of the basic types String , Bool , Int and

Double , as well as Colour . It is straightforward to define more as needed.

A rhythm consists of a sequence of rhythmic parts:

rhythm(atom) = whitespace, sequence(atom) ;

sequence(atom) = { part(atom) } ;

whitespace = { " " } ;

A rhythmic part may consist of a single atom, a rest (denoted by ∼), a polymeter, or a

sequence of atoms:

part(atom) = atom | "~" | poly(atom) | polypad(atom)

| sequenceParens(atom) ;

sequenceParens(atom) = "(", sequence(atom) , ")" ;

Two different methods are provided for combining rhythms into polymeters, denoted with

either square or curly brackets.

poly(atom) = "[", rhythm(atom), {",", rhythm(atom)}, "]" ;

polypad(atom) = "{", rhythm(atom), {",", rhythm(atom)}, "}" ;

e poly rule indicates combination of rhythms by a method of repetition and polypad

by padding. In both cases the result is a paern with the same period, being the lowest common
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multiple of the constituent paern periods. We illustrate their operation by example. Firstly,

in combination by repetition, the first rhythm is repeated twice and the second thrice:4

draw "[black blue green , orange red]"

Combining by padding interleaves the internal structure of a rhythm with rests. In the

following example the first part is padded with one rest every time step, and the second with

two rests every step:

draw "{black blue green , orange red}"

In the above there are time steps where two events co-occur and the block is split in two,

steps where one event takes up the whole block, and steps where no events occur, shown by a

blank block.

Polymeters may be embedded to any depth (note the use of a tilde to denote a rest):

draw "[{black ∼ grey, orange}, red green]"

4.5.5 Pattern combinators

Once we have a basic paern, using either a generator such as sine or the above parser, we

can transform it with functions, each one adding a layer of rhythmic structure.

If our underlying paern representation were a list, a paern transformer would operate

directly on sequences of events. For example, we might rotate a paern one step forward by

popping from the end of the list, and unshiing/consing the result to the head of the list. In

Tidal, because a paern is a function from time to events, a transformermaymanipulate time as

well as events. Accordingly the Tidal function <∼ for rotating a paern to the le is defined

as:

(<∼ ) :: Int → Pattern a → Pattern a
(<∼ ) p n =

Pattern (λt → at p (t + n)) (period p)

4Note that co-occurring events are visualised by the draw function as vertically stacked colour blocks.

86



C 4: L

Rotating to the right is simply defined as the inverse:

( ∼>) :: Int → Pattern a → Pattern a
( ∼>) p n = p <∼ (0 - n)

e append function appends one paern to another timewise. If the first paern is ape-

riodic, then the second paern is never reached, so the result is the first paern unchanged.

append :: Pattern a → Pattern a → Pattern a
append a@(Pattern f Nothing) _ = a

If the first paern is periodic, and the second is aperiodic, then the second is appended to

a single cycle of the first, and the resulting paern is aperiodic.

append a@(Pattern _ (Just l)) b@(Pattern _ Nothing) =
Pattern newF Nothing

where newF n | n < l = at a n
| otherwise = at b (n - l)

If both paerns are periodic, then the resulting paern alternates between them, with a

period that is the sum of those of the constituent paerns.

append a@(Pattern f (Just l)) b@(Pattern f' (Just l')) =
Pattern newF (Just newL)

where
newL = l + l'
newF n | cycleP < l = f ((loopN ∗ l) + cycleP)

| otherwise = f' ((loopN ∗ l') + (cycleP - l))
where cycleP = n `mod` newL

loopN = n `div` newL

e following illustrates append in use:

drawGray $ append (tween 0 1 8) (tween 1 0 8)

e cat function for joining together a list of paerns is trivial to define as a fold over

append :

cat :: [Pattern a] → Pattern a
cat = foldr append nullPattern
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Further combinators are defined for reversing a paern with rev :

drawGray $ rev (sine1 8)

Or alternatively playing a paern forwards and then in reverse with palindrome :

drawGray $ palindrome (sine1 8)

e every function allows transformations to be applied to periodic paerns every n

cycles. Its definition simply multiplies the period of the given paern by n - 1 , then appends

the transformed paern to it:

every :: Int → (Pattern a → Pattern a) → Pattern a
→ Pattern a

every 0 _ p = p
every n f p = (p ∼ ∗ (n - 1)) `append ` f p

( ∼ ∗) :: Pattern a → Int → Pattern a
( ∼ ∗) p n = Pattern (at p) (fmap (∗ n) (period p))

e following demonstrates how the every combinator may be used to rotate a paern

by a single step every third repetition:

draw $ every 3 (1 ∼>) "black grey red"

Because the Paern type is defined as a functor, we may apply a function to every element

of a paern using the fmap , or its operator form <$> . For example, we may add some blue

to a whole paern by mapping the blend function (from the Haskell Colour library) over its

elements:

p = every 3 (1 ∼>) "black grey red"
draw $ blend 0.5 blue <$> p

We can also apply the functor map conditionally, for example to lighten the paern every

third cycle:
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drawGray $
every 3 ((+ 0.6) <$>) "0.2 0.3 0 0.4"

If we were doing something similar to a sound rather than colour event, we might under-

stand it as a musical transposition.

As Haskell is a functional language, it is possible to have higher order paerns, that

is paerns of functions. For example, the following would result in a paern of type

Pattern (Colour →Colour) , a paern of color blends alternating between red and blue:

(blend 0.5) <$> "red blue"

We can hardly visualise a paern of functions, but such paerns are of use, as we shall see

shortly.

Haskell has a superclass of functor called the applicative functor, which defines the <∗>

operator, allowing us to apply functions ‘inside’ Paerns to other values.5 Tidal paerns have

the following instance definition:

instance Applicative Pattern where
pure x = Pattern (pure (pure (pure x))) (Just 1)
Pattern fs pf <∗> Pattern xs px =

Pattern (liftA2 (zipCycleA2 (<∗>)) fs xs) (lcd pf px)

-- lowest common duration
lcd :: Period → Period → Period
lcd Nothing _ = Nothing
lcd _ Nothing = Nothing
lcd (Just n) (Just n') = Just (lcm n n')

e definition of <∗> allows a new paern to be composed by taking a function with

multiple parameters, and mapping it over combinations of values from more than one paern.

e <∗> operator is defined for Paerns so that all events are used at least once, and no

more than necessary to fulfil this constraint. For example, the following gives a polyrhythmic

lightening and darkening effect, by blending colours from two paerns:

draw $ (blend 0.5) <$> "red blue" <∗> "white white black"

5I am grateful to Ryan Ingram for his help with this applicative functor definition.
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e Tidal onsets function filters events, only allowing through those which begin a

phrase. Here we manipulate the onsets of a paern (blending them with red), before com-

bining them back with the original paern.

draw $ combine [blend 0.5 red <$> onsets p, p]
where p = "blue orange ∼ ∼ [green , pink] red ∼ "

e onsets function is particularly useful in cross-domain paerning, for example tak-

ing a paern of notes and accentuating phrase onsets by making a time onset and/or velocity

paern from it.

4.6 Open Sound Control paerns

Tidal has no capability for sound synthesis itself, but instead represents and schedules paerns

of Open Sound Control (OSC; Freed and Schmeder, 2009) messages to be sent to a synthesiser.

Below we see how the ‘shape’ of an OSC message is described in Tidal:

synth = OscShape {path = "/trigger",
params =

[ F "note" Nothing ,
F "velocity" (Just 1),
S "wave" (Just "triangle")

],
timestamp = True

}

is is a trivial "/trigger" message consisting of two floating point parameters and one

string parameter. Each parameter may be given a default value in the OscShape ; in this case

velocity has a default of 1 , wave has a default of "triangle" and note has no default. is

means that if an OSC paern contains a message without a note value set, there will be no

value to default to, and so the message will be discarded. Paern accessors for each parameter

are defined using names given in the OscShape :

note = makeF synth "note"
velocity = makeF synth "velocity"
wave = makeS synth "wave"
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4.6.1 Seduling

As timestamp is set to True in our OscShape example, one extra paern accessor is available

to us, for onset deltas:

onset = makeT synth

is allows us to make time paerns, applying subtle (or if you prefer, unsubtle) expres-

sion. is is implemented by wrapping each message in a timestamped OSC bundle. A simple

example is to vary onset times by up to 0.02 seconds using a sine function:

onset $ (∗ 0.02) <$> sine 16

e $ operator does nothing except apply the right hand side to the function on the le.

However it has very low precedence, and so is useful for removing the need for parenthesis in

cases such as this.

Instances of Tidal can synchronise with each other (and indeed other systems) via the Net-

Clock protocol (http://netclock.slab.org/). NetClock is based upon time synchronisa-

tion in SuperCollider (McCartney, 2002). is means that time paerns can notionally schedule

events to occur in the past, up to the SuperCollider control latency, which has a default of 0.2

seconds.

It is also possible to create tempo paerns to globally affect all NetClock clients, for example

to double the tempo over 32 time steps:

tempo $ tween 120 240 32

4.6.2 Sending messages

We connect our OSC paern to a synthesiser using a stream , passing the network address

and port of the synthesiser, along with the OscShape we defined earlier:

s ← stream "127.0.0.1" 7770 synth

is starts a scheduling thread for sending the messages, and returns a function for replac-

ing the current paern in shared memory. Paerns are composed into an OSCmessage Paern

and streamed to the synthesiser as follows:
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s $ note ("50 ∼ 62 60 ∼ ∼ ")
∼ ∼ velocity foo
∼ ∼ wave "square"
∼ ∼ onset ((∗ 0.01) <$> foo)

where foo = sine1 16

e ∼∼ operator merges the three parameter paerns and the onset paern together, into

a single OSC message paern. is is then passed to the stream s , replacing the currently

scheduled paern. Note that both velocity and onset are defined in terms of the separately

defined paern foo .

4.6.3 Use in improvisation

Music improvisation is made possible in Tidal using the dynamic Glasgow Haskell Compiler

Interpreter (http://www.haskell.org/ghc/). is allows the musician to develop a paern

over successive calls, perhaps modifying the preceding listing to transpose the note values

every third period, make a polyrhythmic paern of wave shapes, or combine multiple onset

paerns into a chorus effect. Tidal provides a mode for the iconic emacs programmer’s editor

(http://www.gnu.org/software/emacs/) as a GHCI interface, allowing paerns to be live

coded within an advanced developers’ environment.6

As well as to music, Tidal has also been applied to the domain of live video animation, in

support of the musician Kirk Degiorgio in Antwerp, May 2010. is was inspired by the art of

colour play developed by Mary Hallock-Greenewalt (§2.5), and focused on colour transitions

and juxtapositions between colours. Paerns of colour transitions are specified in a manner

analogous to musical events, with something like chords of colour provided by spliing the

display into vertical bars. For example in order to move from three colours to two, four transi-

tions are performed, as the central colour is split in two. Paerns may be applied to the three

parameters of hue, transition type (either linear or sinusoidal) and transition speed. For the

performance, beat tracking was employed so that the colours changed in time with the regular

pulse of the music. e performance was not recorded or formally evaluated, but serves as an

example of the applicability of Tidal to the visual domain.

4.6.4 Future directions

We have introduced Tidal, a language designed for live coding of musical paern. Tidal has

already been field tested through several performances, including to large audiences at interna-

tional music festivals, informing ongoing development of the system. Although it is designed

6Projecting the emacs interface as part of a live coding performance has its own aesthetic, having a particularly
strong effect on many developers in the audience, either of elation or revulsion.
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for direct use, Tidal provides an ideal base on which to build experimental user interfaces. For

example in §5.6, we will introduce a visual programming interface, with Tidal providing the

underlying paern DSL.

As noted in §4.3 time is in general not well supported in programming languages. In Tidal

we have represented time in a function from discrete time to events, which works well within

electronic dance music genres with minimal deviation from a steady pulse. While Tidal does

allow expression through paerns of time, in a broader context however its sole focus on sound

event onsets is a huge constraint on music expression. Following the Functional Reactive Pro-

gramming literature to representing time with real or rational numbers is compelling. is

would be towards supporting representations of time based not just on fiing events on to

grids, but also arranging sounds relative to each other. at is, supporting smooth as well as

striated time (§2.1). is would draw upon extensive work by Bel (2001) on constraint-based

time seing.

4.7 Discussion

Language is a central issue in programming languages for the arts, and has taken a central

position in the structure of the present thesis. It is of course a broad subject, within which we

have visited a number of sub-themes. We have compared programming languages with natural

languages, taking a view from Wigenstein of both existing on the same landscape. We have

taken a cognitive view of semantics and related it to spatial relationships in music, allowing us

to take an unconventional position of relating meaning in music with that of natural language.

We have made a distinction between declarative and imperative approaches to programming

that focuses on levels of abstraction, where a declarative approach is one that matches the level

of abstraction of the target domain. is has finally led us into the subject of linguistic descrip-

tions of paerns of experience, and the introduction of Tidal, a paern DSL for improvising

music. Tidal provides a system allowing artists to potentially work at a level which is abstract

from the surface of the target medium, in this case sound. is does not necessarily distance

them from their work, but rather allows them to work directly with the structure of a piece, at

a higher level of composition.

We draw these strands together to make the point that programming languages are human

languages, for communicating with computers but also other programmers and with ourselves.

is will be developed further in the following chapters, in focusing on the notation of com-

puter programs (ch. 5) and their use in creative processes (ch. 6). Already though the part that

the design of programming languages can have in human expression is clear, in allowing the
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development of languages that accord with the structure of our target medium. is promise

has led many artists to be hooked by programming, and the wider public perception of pro-

gramming as a technical endeavour may at last be liing as communities of artist-programmers

grow. From here we look for how programming languages, their notation and use may be re-

framed in response.
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Notation

Building upon our discussion of the syntax and semantics of language, we now examine pro-

gramming language environments as designed user interfaces. Study of the notation of com-

puter programs brings Applied Psychology toHuman-Computer Interaction (Blackwell, 2006b),

allowing us to take a human-centric view of the activity of programming. Formally speaking,

all mainstream programming languages are Turing-complete, and so have equivalent expres-

sive power (§2.2). However, in practice the design of programming notation makes certain

ways of working easy and others difficult, or practically impossible. We argue that as the re-

sult of design processes over the last fiy years, computer languages have become specialised

towards use in industry to the detriment of more freeform use. ese constraints have become

so embedded in languages and their use that it has become difficult to see beyond them. is is

reflected in the way we describe mainstream languages as general purpose, assumed to be suit-

able for any purpose, or in other words, none in particular. However we contend that these

languages are unsuitable for smaller scale, human-level domain of the artist-programmer.

In the present chapter we will examine and compare existent notations using the Cognitive

Dimensions of Notation framework, briefly reviewed below. We will focus in particular on the

use of time and space in notations, which we will assert is of particular concern to the arts. is

will lead into the introduction of Texture, a visual programming language with novel use of

Euclidean distance in the syntax of a pure functional language. is will provide foundations

for the following chapter, in which will examine how the use of programming notations impact

upon creative processes.

5.1 Cognitive Dimensions of Notation

eCognitive Dimensions of Notation framework is designed to aid discussion of programming

language design (Blackwell and Green, 2002). Rather than a checklist of good or bad design,
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it describes a set of features which may be desirable or not, and which interact with each

other depending on the context. Further more they are known as dimensions because they

are not absolutes but scales. An example of a common trade-off is one between the viscosity1

dimension, how difficult it is to modify a program, and the provision for secondary notation. If

we change a notation to extend the role of secondary notation, then viscositywill also increase,

as the secondary notation must be changed to match any syntax change. A list of cognitive

dimensions with short descriptions is shown in Figure 5.1.

Table 5.1: Cognitive Dimensions of Notation, adapted from Chur and Green (2008)

Abstraction Availability of abstraction mechanisms.

Hidden dependencies Invisibility of important links between entities.

Premature commitment Constraints on the order of doing things.

Secondary notation Notation other than formal syntax.

Viscosity Resistance to change.

Visibility Visibility of components.

Closeness of mapping Closeness of representation to target domain.

Consistency Similar semantics are expressed in similar syntactic forms.

Diffuseness Verbosity of language.

Error-proneness Likelihood of mistakes.

Hard mental operations Demand on cognitive resources.

Progressive evaluation Temporal relationship between edits and their
evaluation.

Provisionality Degree of commitment to actions or marks.

Role-expressiveness Extent to which the purpose of a component may be
inferred.

e cognitive dimensions exhibit many inter-dependencies. ese trade-offs are not fully

formalised, and it is presumed that they differ depending on the task at hand. Indeed a di-

mension may be desirable in one context, but undesirable in another. For example an increase

in viscosity, making programs more difficult to change, is generally seen as having negative

impact. However Beckwith and Burne (2004) report that increasing viscosity of certain no-

tational aspects improved the performance of a class of subjects using their language.

1To clarify discussion, we will use a particular typeface to indicate where we refer to a particular dimension, for
example as with hidden dependencies.
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e Cognitive Dimensions of Notation are particularly useful in considering the design of

Domain Specific Languages (DSLs), by providing standard terms for describing the particular

demands of a task domain. In the following we apply it to the notation of time in the domain

of live music improvisation.

5.2 Notation in Time

We have already seen problems that the march of time presents to computer language in the

previous chapter (§4.3). It can be useful to separate the declarative what from the imperative

how, but when the behaviour of an algorithm over time is important to the aesthetics of a digital

artwork, the how is the what. We introduced Tidal, which illustrates this point well, being a

paern DSL solely concerned with the notation of events in time (§4.5).

Designers of conventional programming languages consider time in terms of efficiency, and

as something to be saved or spent. For those designing languages for the time based arts, time

is rather part of the structure of the experience that is being represented, a stratum of both

digital paern and analogue movement.

ere is however an awkwardness about the relationship between thewhat of notation and

how of the passage of time. On one level they seem separate: a declarative description of a time

structure is one thing, and an imperative algorithm for accurately and efficiently producing

that structure may be quite another. But in practice they rarely are completely separate, the

algorithm leaves its imprint, paerning its output. On recognising the ‘glitches’ arising from

the operation of a particular algorithm, artists bring them into the music itself (Cascone, 2000).

Timemay always be relied upon to pass, and it passes not only during a program’s interpre-

tation but during the activity of notation itself. is is of concern to programming languages

designed for the arts, where the separate timelines of development and execution effectively

separates an artist from their target medium. Figure 5.1 shows the Processing programming

environment, which is an adaptation of the general purpose Java programming language, and

is designed for artists who are learning programming. To this end the interface has few distrac-

tions, and makes running a program very straightforward: the programmer simply presses the

‘play’ buon marked with an icon familiar from music equipment. Nonetheless, the program-

mer must stop writing code, press the buon and wait a lile while before seeing the results

of their work. is is not wholly bad, and may be thought in terms of an artist taking a step

back from their work to pause in consideration. However, such periods of reflection should be

taken on an artist’s own terms, and not forced upon them by an external process.

Live coding is a movement that has emerged to investigate the removal of the compilation
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Figure 5.1: e Processing programming environment. Every time the ‘play’ buon is pressed, the program
is compiled and executed, with no state preserved between successive runs (unless explicitly defined).

Figure 5.2: e Fluxus programming environment. e editor containing the source code of a program is
embedded in the same 3D scene as its output. e source is dynamically interpreted, so that the program
may be anged during a live coding performance (§6.8).
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step in an arts context. We will investigate the creative processes of live coding more broadly

in §6.8, and so for now focus on notational aspects, in particular, how the removal of the com-

pilation step results in the intertwining of active notation with interpretation. Figure 5.2 shows

the Fluxus interface, where the code editor is placed in the same scene as the process output.

ere is no ‘play’ buon in Fluxus as such, instead the code is continuously playing. Incremen-

tal changes to the source code are reflected in the output whenever the programmer presses

the F5 buon. e visual form of the code is more literally part of its own output; the visual

output is a 3D scene, of which the text editor is part. It is therefore possible to write a program

that modifies the display of its own code.

How is live coding technically possible? Using the programming environments that have

become conventional, artists cannot generally experience what they make at the same time as

they are making it. is problemmay seem insurmountable; while it runs, a programmaintains

state, its ‘working memory’, the data generated and collected during its execution. Such data

may come with no description apart from its declaration in program code. If one then changes

the program code, there may be no mechanism in which the new version of the program may

continue where the old version le off, as the old state may be of no use to the new version of

the program. e cognitive dimension of progressive evaluation therefore seems difficult to

achieve. ere are however a number of ways in which it can be done, although each case has

significant impacts on other cognitive dimensions.

External grounding. For certain task domains, the internal state of a program has lile or no

significance. is is the case in Tidal (§4.5), where just about the only ‘state’ is the measurement

of time kept by a separate process, the system clock. It is also the case in languages known as

UNIX system shells. ese developed from research into conversational programming (Kupka

and Wilsing, 1980), where programmers interact with a language interpreter one statement at

a time, able to consider systems feedback at each step. Conversational programming lives on

in shell languages such as Bash, where the state is global to the whole computer system, with

access control for security. In particular, state is almost exclusively held within the filesystem,

a tree structure able to hold not only permanent files on disks, but processes, their environment

variables and working ‘core’ memory (Filesystem Hierarchy Standard Group, 2003). As such a

shell programmer tends to work with live data, making irreversible and at times drastic actions,

an impact along the cognitive dimension of premature commitment. However some systems,

including some file systems and relational databases, implement transactions, allowing a series

of successive actions to be iteratively applied, but not commied. When live coders work

before an audience, turning back performance time is impossible, but being able to roll back
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development to a previous version, for example for musical reprise, is certainly useful.

Internal grounding. is approach to progressive evaluation defines state in such a way

that it may be passed from one version of a program to the next. is is conceptually similar to

external grounding above, except the state is not shared with other processes. e programmer

is le with the hard mental operation of being aware of certain conflicts that may arise, for

example if a variable with the same name is used for different purposes in a successive ver-

sion of the code, state will be carried across to unintended effect. In a strictly typed language

such as Haskell, state is handled in a highly formalised manner, and so it is possible to arrange

for a program to return its entire state for coercion into a form suitable for its successive ver-

sion (Stewart and Chakravarty, 2005). Alternatively, dynamic scripting languages such as Perl

make it straightforward to evaluate code that replaces existing functions, where state may be

preserved using global variables.

Self-modification. A rather unusual approach, developed in the Feedba.pl live coding en-

vironment by the present author, is to store state in the source code itself (McLean, 2004). e

programmer is put in the position of writing code that stores, reads and modifies values in its

own description. is is done either by programmatically updating assignment statements, or

storing values as program comments, so that secondary notation is parsed and modified by

its own program. is creates an interaction where the source code is used to modify both the

instructions and state of a process, and also to show output from its execution.

Temporal recursion. is term was coined by Sorensen (2005) in describing the operation of

the music live coding system Impromptu, based around the Lisp derivative Scheme. A recursive

function is one that calls itself, and a temporal recursive one is one that calls itself but with

a scheduled delay. Progressive evaluation is then simply a case of swapping one function for

another between self-calls.

Hybrid. A hybrid approach is certainly possible, exemplified by SuperCollider, a music pro-

gramming language with two concurrent processes. One process maintains a pure functional

graph for sound synthesis, while the other acts as a dynamic language interpreter. e lan-

guage process manages such tasks as scheduling events and signalling graph changes of the

synthesis process. e synthesis process is largely stateless, and care must be taken to avoid

discontinuities when the graph is changed, audible as clicks. JITLib has been developed to aid

this, providing a means to transition audio between successive versions of code (Rohrhuber

et al., 2005).
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e above methods all act to embed program development in a timeline shared with its

execution, with practical applications being explored in the arts. We now move from the role

of time in notation, to examine the role of space.

5.3 Visual notation

Visual Programming Languages is an active research field, looking at how to design program-

ming notations that go beyond conventional linear text. To head off confusion, note that the

use of visual here is not the same as popular use, such as in “Visual Basic”, to describe language

environments based on GUI forms and event-driven programming. Instead, visual program-

ming languages are those making heavy use of visual elements in the code itself, for example

where a program is notated as a graphical diagram.

Research into visual languages is hampered by a definitional problem. In a well-cited tax-

onomy of visual programming, Myers (1990, p. 2) defines visual languages as “any system that

allows the user to specify a program in a two (or more) dimensional fashion.” Myers specifi-

cally excludes conventional textual languages, because “compilers or interpreters process them

as long, one-dimensional streams.” is exclusion is highly problematic however, as at base all

a computer can do is process one-dimensional streams. Further, some textual languages such

as Haskell and Python do indeed have two dimensional syntax, where vertical alignment as

well as horizontal adjacency is significant; however no-one would call either language ‘visual’.

Worse still, for the majority of visual languages, 2D arrangement has no syntactical signifi-

cance whatsoever, and is purely secondary notation. Oen graphical icons are described as

visual, but they too are discrete symbols, in other words textual.

is confusion stems from two misunderstandings, firstly that text is non-visual, and sec-

ondly that visual interfaces are necessarily a technological advance beyond textual interfaces.

e former point is in denial of the heavy use of spatial layout in structuring text, and the lat-

ter point makes the same mistake as those assuming analogue expressions are more advanced

than digital ones (§2.9). As a species we navigated spaces before we marked them out with

sequences of symbols, and made marks on surfaces before we used those marks to transcribe

words. Indeed it runs against implicit hierarchy in their representations; wrien words (ch. 3)

are comprised of symbols (ch. 2), notated with images. From this perspective, textual interfaces

are the more advanced, as they are developments of visual interfaces. However it does not fol-

low that text is superior to visual interfaces, but rather that the whole dichotomy of visual and

textual language is false. Language by nature involves discrete symbols, but may be integrated

with analogue symbols towards a richer, dual code of expression.
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Figure 5.3: e Pure Data visual programming environment. e locations of the boxes have no significance,
but allow the programmer free rein in arranging their program in a manner meaningful to themselves.
Image c© Miller Puee, used here under the terms of the BSD License.

5.3.1 Pater Languages

Research into visual programming languages has held much promise, but has so far had lile in

the way of broad industry take up. An intention of many visual language researchers has been

to find ways of using visual notation that result in new, broadly superior general programming

languages (Blackwell, 2006c). However this panacea has not been reached, and instead research

around the cognitive dimensions of notations (§5.1), has identified inherent, inescapable trade-

offs. ere are however two domains where visual programming has been highly successful,

one being engineering, exemplified by the LabVIEW visual programming language. e other,

of special relevance to our theme, is computer music. In particular, Pater languages have

become a dominant force in computer music and interactive art since their introduction by

Puckee (1988). Using a data flow model inspired by analogue modular synthesis, users of

Patcher languages such as Pure Data orMax/MSP are able to build programs known as ‘patches’

using a visual notation of boxes and wires. Patches may be manipulated while they are active, a

form of live coding predating the movement examined in §6.8 by well over a decade. e long-

lived popularity of Patcher languages, the continued innovation within communities around

them, and the artistic success of their use is undeniable.

Patcher languages allow programmers freedom in arranging their programs, to great ad-

vantage, a point we will come to later. However first we raise a point of contention; as with

many visual programming languages, in terms of syntax, they are hardly visual at all. In the

Pure Data patch shown in Figure 5.3, you could move the boxes wherever you like, or even
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place them all on top of one another, it would make no difference to the interpreter. ose

familiar with Max/MSP may counter this line of argument by pointing out that right-le or-

dering signifies evaluation order in Max. is falls on two counts; first, Max programmers are

discouraged from branching that relies on this, in favour of the trigger object. Second, having

right-le execution order does not distinguish Max from any mainstream textual language. In-

deed to say that Patcher languages are not themselves significantly textual is in blind denial of

the large number of operators and keywords shown as editable text in a patch.

An advantage of Patcher languages is that they are unconstrained by visible dimensions,

in that you can place objects anywhere with lile or no syntactical significance. In conven-

tional languages, to relate two words together, you must put them adjacent to one another,

in a particular order. In Patcher languages, you instead connect them with lines, effectively

defining syntax graphs of arbitrary dimension, hypercubes and up. As opposed to the defini-

tion related earlier, from this perspective it is actually ‘textual’ rather than ‘visual’ languages

that are constrained by the two dimensions of the visual canvas.

e above is not an aack on Patcher languages – syntax is not everything. Well, to the

interpreter syntax is everything, but to the programmer, who is our focus, it is only half the

story. Because Patcher languages have such remarkably free secondary notation, they allow

us to lay programs out however we like, and we may embrace this visual freedom in making

beautiful patches that through shape and form relate structure to a human at a glance, in ways

that linguistic syntax alone cannot do. at is why we call these visual languages; while the

language syntax is not visual, the notation is very much so.

5.4 Notation and Mental Imagery

All programming languages can be considered in visual terms, we do aer all normally use

our eyes to read source code. Programming languages have context-free grammars, allowing

recursive forms oen encapsulated within round brackets, resulting in a kind of visual Euler

diagram. We can also say that adjacency is a visual aribute of grammar; as we know from

Gestalt theory, adjacency has an important role in perceptual grouping (Kohler, 1930). ese

visual features are used to support reading of code, where our eyes saccade across the screen,

recognising discrete symbols in parallel, chunked into words (Rayner and Pollatsek, 1994). Cru-

cially however, we are able to aend to both visuospatial and linguistic aspects of a scene si-

multaneously, and integrate them (§2.2.1). Discrete symbols are expressed within a language

grammar, supplemented by visuospatial arrangement expressing paralinguistic structure. e

computer generally only deals with the former, but the human is able to aend to both.
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Magnusson (2009) describes a fundamental difference between acoustic and digital music

instruments in the way we play them. He rightly points out that code does not vibrate, and so

we cannot explore and interact with a computer music language with our bodies, in the same

way as an acoustic instrument. However, programmers still have bodies which contain and

shape their thoughts, and in turn, through secondary notation, shape their code. Programmers

do not physically resonate with code, but cognitive resources grounded in perceptual acuity

enables them to take advantage of visuospatial cognition in their work.

We have seen that visuospatial arrangement is of importance to the notation of Patcher

languages, despite not being part of syntax. Our argument follows that if shape, geometry

and perceptual cues are so important to human understanding, then we should look for ways

of taking these aspects out of secondary notation and make them part of primary syntax.

Indeed, some languages, including recent music programming languages already have.

5.5 Geometry in Syntax

In §2.2.3, we examined the role of analogue representation in computer language against the

background of Dual Coding theory. Computer languages allow programmers to communicate

their ideas through abstraction, but in general do not at base include visuospatial syntax to

support this. Do programmers then simply switch off a whole channel of perception, to fo-

cus only on the discrete representation of code? It would appear not, we have seen that not

only do programmers report mental imagery in programming tasks (§2.2.2), but that the use of

spatial layout is an important feature of secondary notation in mainstream programming lan-

guages, which tend to allow programmers to add whitespace to their code freely with lile or

no syntactical meaning (§5.4). Programmers use this freedom to arrange their code so that its

shape relates important structure at a glance. at programmers need to use spatial layout as a

crutch while composing discrete symbolic sequences is telling; to the interpreter, a block may

be a subsequence between braces, but to an experienced programmer it is a perceptual gestalt

grouped by indentation. From this we conclude that concordant with Dual Coding theory, the

linguistic work of programming is supported by spatial reasoning, with secondary notation

helping bridge the divide.

e question is whether spatial reasoning can be successfully employed to work with pri-

mary syntax, where visuospatial layout is relevant to the computer as well as the human.

We can find interesting perspectives on this question in the realm of esoteric programming

languages.2 Esoteric programming languages are those which demonstrate strange and ex-

2See http://www.esolangs.org/ for a comprehensive catalogue of esoteric programming languages.
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perimental ideas, for fun rather than practical use, and we approach them here in search for

inspiration for practical applications in the arts. e use of spatial arrangement in primary

syntax has become a popular game in the esoteric language community. Befunge, illustrated in

Figure 5.4, is a particularly interesting example, a textual language with a highly two dimen-

sional syntax. Control flow may proceed up, down, le or right, directed by single character

instructions.

e instruction set of the Piet language is inspired by Befunge, but rather than the contents

of individual cells, the Piet instruction set is given by colour relationships between neighbour-

ing cells. For example, a multiply operation is symbolised by the colour hue changing a lile

and darkening considerably. e programmer is given a great deal of freedom to choose partic-

ular colours within these constraints. Much like Befunge, Piet instructions include directional

modifiers, and control flow travels in two dimensions. Figure 5.5 contains an example program,

showing its resemblance to the modernist paintings of Piet Mondrian which inspired the Piet

language.

Musicians oen lead the way in technology, and programming language design is no ex-

ception, as there are a number of examples of computermusic languages which include geomet-

rical measures of spatial arrangement in their primary syntax. Firstly, Nodal is a commercial

environment for programming agent-based music (Mcilwain et al., 2005). Nodal has several in-

teresting features, but is notable here for its spatial syntax, where distance symbolises elapsed

time. As the graph is read by the interpreter, musical events at graph nodes are triggered,

where the flow of execution is slowed by distance between nodes. Colour also has syntactic

value, where paths are identified by one of a number of hues.

Al-Jazari is one of a series of playful languages created by Dave Griffiths, based on a com-

puter game engine and controlled by a gamepad (McLean et al., 2010). In Al-Jazari, cartoon

depictions of robots are placed on a grid and given short programs for navigating it, in the

form of sequences of movements including interactions with other robots. As with Nodal,

space maps to time, but there is also a mechanism where robots take action based on the prox-

imity and orientation of a another robot. In programming Al-Jazari you are therefore put in

the position of viewing a two dimensional space from the point of view of an agent’s flow of

execution. Indeed it is possible to make this literally so, as you may switch from the crow’s

nest view shown in Figure 6.1 to the first-person view of a robot.

Our last example is the ReacTable (Jordà et al., 2007), a celebrated tangible interface aimed

towards live music. Its creators do not describe the ReacTable as a programming language, and

claim its tangible interface overcomes inherent problems in visual programming languages

such as Pure Data. But truly, the ReacTable is itself a visual programming language, if an
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Figure 5.4: A pseudo-random number generator wrien in the two-dimensional
language Befunge.

Figure 5.5: Source code wrien in the Piet language with two dimensional, colour
syntax. Prints out the text “Hello, world!”. Image c©omas So 2006. Used
under the Creative Commons BY-SA 2.5 license.
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Figure 5.6: eReacTablemusic language, where relative distance and orientation is part of primary syntax.
Image c© Daniel Williams, used here under the terms of the Creative Commons BY-SA 2.0 License.

extraordinary one. It has a visual syntax, where physical blocks placed on the ReacTable are

identified as symbols, and connected according to a nearest neighbour algorithm, the results of

which can be seen in Figure 5.6. Not only that, but relative distance and orientation between

connected symbols are parsed as values, and used as parameters to the functions represented

by the symbols. Video is back-projected onto the ReacTable surface to give feedback to the

musician, for example by visualising the sound signal between nodes. e ReacTable has also

been repurposed as an experimental interface for making graphics (Gallardo et al., 2008), which

suggests that the ReacTable is not as far from a general purpose programming language as it

may first appear.

5.6 Visual Programming with Texture

We now introduce Texture, a visual programming language, based upon the Tidal language for

the live coding of paern introduced in §4.5. e name Texture is intended to accentuate the

role of text in programming, as a structure woven into a two dimensional surface. is reflects

Texture’s novel use of spatial arrangement in the notation of a pure functional programming

language. An important design aim for Texture is to create a programming notation suitable

for short, improvised scripts, allowing fast manipulation by an improviser, where lay audience

members may appreciate more of the structure behind the code, made explicit through cues

that are both visual and syntactical. Here we describe Texture as an early prototype system

with novel features, describing the thinking behind it and issues raised through its development

and early use.

e Texture environment and parser is implemented in C, using the free/open source Clut-

ter graphics library (http://clutter-project.org/) for its user interface. It compiles its
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programs into an intermediate form of Haskell (Jones, 2002) code, which is piped straight to a

Haskell dynamic interpreter whenever a Texture program is modified. Haskell then takes care

of the task of evaluating the code and scheduling sound events accordingly, using Tidal. Much

of Haskell’s type system is re-implemented in Texture, its contribution not being to provide a

whole new language, but rather a complementary and novel visual syntax.

5.6.1 Geometric relationships

A programwrien in Texture is composed of strongly typed values and higher order functions.

For example the function + takes two numbers as arguments (either integers or reals, but not

a mixture without explicit conversion), and returns their sum. Here is how + 1 2 looks in

Texture:

Two green lines emerge from the boom right hand side of the function + , both travelling

to the upper le hand side of its first argument 1 , and then one travelling on to the second

argument 2 . is visualises Haskell’s automatic currying of functions (§4.5.1), whereby each

time a parameter is applied, a function is returned with arity reduced by one. is visualisation

of arity makes it easy to perceive where functions are partially applied, which we will show

later in our example of fmap .

e programmer types in functions and values, but does not manually add the lines con-

necting them, as they would with a Patcher language. e lines are instead inferred and drawn

automatically by the language environment, according to a simple rule: the closest two type-

compatible function-value pairs connect, followed by the next two closest, and so on. Values

may be moved freely with the mouse, which may change the topology of the graph, which

updates automatically.

Texture has prefix notation (also known as Polish notation) where the function comes first,

followed by its arguments. ere is no distinction between functions and operators. e values

can be placed and moved around the screen, with a line drawn linking the function to each of

its arguments in turn. For example + 2 1 may be expressed as either of the following:

In both cases, two parallel lines travel from the boom right hand corner of the function

+ to the top le of 2 , being the closest compatible value. As already mentioned, these lines
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represent the arity of the function. e line representing the parameter terminates at its argu-

ment 2 , and the remaining line continues to the top le of 1 . Again, these symbols connect

automatically, closest first, where ‘closest’ is defined as Euclidean distance in two dimensional

space. If a symbol is moved, the whole program is re-interpreted, with connections re-routed

accordingly.

e functions may be composed together as you might expect. Here is

+ (+ 1 2) (+ 3 4) in Texture:

e use of green in the above examples is significant, representing the integer types. e

following example shows all the types currently supported by Texture at play:

Of the basic types, strings are golden yellow, integers are green and floating point numbers

are blue. In general, Tidal Pattern s (§4.5.2) are pink, or the similar hues of red for paerns of

OSC parameters or dark pink for paerns of OSC messages (§4.6). Functions assume the colour

of their return value, or if they are not fully applied (i.e. return another function) then they

are white. Lines connecting functions to their parameters are coloured in the same way, for

example in the above example every takes an integer, a function and a paern to apply the

function to, so its lines are coloured green, white and pink respectively.

e following shows the output (re-formaed here to aid reading) from Texture given the

above example.
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sampler (( ∼ ∼ )
(sound (every (3)

(<∼ 2)
(lToP [Just "bd", Nothing , Nothing ,

Just "sn", Nothing , Nothing])
)

)
(delay (fmap (∗ 0.500000) (sine1 16)))

)

e lToP function is of type [Maybe a] →Pattern a , and simply turns a list of events

into a Pattern . e other functions are explained in §4.5.

e strong typing in Haskell places great restrictions on which arguments may be applied

to which Tidal functions. is “bondage and discipline” works out well for Texture, as it limits

the number of possible connections, making it easier for the programmer to predict what will

connect where, supported by the colour highlighting. Furthermore, because Texture enforces

type correctness, there is no possibility of syntactically incorrect code.

5.6.2 User Interface

e Texture user interface is centred around typing, editing and moving words. In fact that is

all you can do – there are no menus or key combinations. A newword is created by moving the

cursor to an empty part of the screen using the mouse, and then typing. e word is completed

by pressing the space bar, at which point the cursor moves a lile to the right where the next

word can be begun, mimicking a conventional text editor. A word is edited by being given

focus with a click of the mouse, or moved by holding down the shi key while being dragged

with the mouse. A whole function tree (the function and its connected arguments) is moved

by holding down control while dragging, although the arguments may connect differently in

the new location according to the new context.

5.6.3 Texture in Practice

Having seen much of the technical detail of Texture, we turn to its musical context. By way of

illustration, a video showing Texture in use is available on the enclosed DVD.

Texture is a prototype language that has not yet undergone full examination through HCI

study, however preliminary observations have been conducted. In particular a small workshop

for six participants was arranged with the Access Space free media lab in Sheffield, and led by

the present author. A limit of six people was agreed as a good balance for a guided workshop,

and the places were filled on first-come-first-served basis. e participants were found by the

arts programme manager at Access Space, who advertised through their own website, through
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public, arts related mailing lists, as well as approaching regular Access Space participants di-

rectly. All participants were male, aged 23, 26, 28, 30, 42 and 42 years of age. Four lived locally

to Sheffield, and two travelled from Liverpool. All identified as musicians, four using com-

puters in their music, and five playing traditional instruments. Two had prior experience of

programming, only one of which had experience of a functional programming language. e

workshop was free of charge, being part of an arts programme funded by the Arts Council,

England. Participants were free to leave at any time with no penalty, but all stayed to the end.

e workshop was in the form of an hour long presentation surveying live coding practice

and other influences of Texture, followed by a three hour hands-on workshop. e first half of

the hands-on section introduced techniques on a projected display, which participants, while

listening on headphones, copied and adapted in exploration of their use. e second half was

more freeform, where each participant had their own set of stereo speakers at their computers.

e participants were playing to a globally set tempo, with accurate time synchronisation.3

ismeant that they were able to respond to each other’s paerns, improvising music together;

because of the layout of the room, it was only possible to clearly hear the music of immediate

neighbours. Recorded video taken from this part of the workshop is available on the enclosed

DVD.

e participants were the first people to use Texture besides the present author, and so

there was some risk that the participants would be unable to engage with it due to unforeseen

technical problems or task difficulty. However all showed enthusiasm, were keen to explore

the language, and joined in with playing together over speakers.

e participants were surveyed for opinions through a questionnaire answered via the sur-

veymonkeywebsite, using computers at Access Space. is was done in two parts, immediately

before and then immediately aer the workshop. e participants were told that the survey

was designed to “help in the development of the soware used in the workshop” and were

asked to “answer the questions honestly”. To encourage honest responses further, the survey

was conducted anonymously.

Participants were asked to rate their agreement with three statements both before and aer

the workshop, on a Likert scale from Disagree Strongly (1) to Agree Strongly (5). Although

there is lile statistical power for such a small group, feedback from these individuals was

encouraging for a system at such an early stage of development. e results are visualised

in Figure 5.7. Overall, participants tended to agree with “I am interested in live coding” and

“I would like to be a live coder” both before and aer the workshop. ey largely disagreed

with “I am a live coder” at the beginning but were less sure by the end, indicating they had

3Accurate time synchronisation was made possible by the netclock protocol.

111

http://surveymonkey.com
http://surveymonkey.com
http://netclock.slab.org


C 5: N

Figure 5.7: Responses on a Likert scale from participants (n=6) in a workshop for the Texture visual live
coding language. e graph visualises a straightforward response count for ea question centered on the
neutral responses. Responses to the first three statements were collected both before and aer the workshop.

achieved some insights and begun to identify with the practice. At the end, four out of the six

participants agreed with a final statement “I would like to use Text[ure]4 again”.

Participants were also given freeform questions asking what they liked and disliked about

Texture, howmuch they felt they understood the connection between the visual representation

and the sound, and soliciting suggestions for improvements. Dislikes and suggestions focused

on technical interface issues such as the lack of ‘undo’, and three found the automatic linking

difficult to work with. On the other hand, three participants reported liking how quick and

easy it was to make changes.

5.6.4 Cognitive Dimensions of Texture

Texture is designed for the improvisation of musical paern, as a visual programming inter-

face to the Tidal paern DSL. e result is a more tightly constrained system than many pro-

gramming languages for music, which generally include extensive facilities for low level sound

synthesis. While the ability to compose right from the micro-level of the sound signal offers

great possibilities, it comes with trade-offs, in particular along the hard mental operations and

diffuseness (verbosity) cognitive dimensions.

e visibility of Texture is high, where a complex rhythm can be notated on a single screen.

We also argue that Texture has high closeness of mapping, as the visual representation of

trees within trees corresponds well with the hierarchical structure of the paern that is being

composed. is echoes the tree structures common in music analysis, and indeed we would

expect significant correspondence between the Texture structure and the listener’s perception

of it. e extent to which an untrained listener may relate the structure they hear with the

4At the time of the workshop, Texture had the working name of Text.
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Texture program they see is an empirical question, but we suspect that further development is

needed to support this.

Creative use of Texture is aided not only by high visibility but also aspects of provision-

ality. What is meant by “creative use” will be outlined in relation to bricolage programming

in §6.3.1. A programmer may work on a section of code and drag it into the main body of the

program when it is ready. ey may also drag part of the code out of the main body and reuse

it elsewhere later. e code must always be syntactically correct, but unless it connects to a

function representing OSC messages sent to a synthesiser, it will have no effect.

e error-proneness of Texture is well positioned. It is impossible to make syntax errors

in Texture, and while the automatic connection can at times have unexpected results, the result

is at times musically interesting, but otherwise straightforward to reverse.

5.6.5 Future directions

Texture is a working prototype, in that it is fully functional as a live music interface, but is a

proof of concept of an approach to programming that brings many further ideas to mind.

In terms of visual arrangement, Texture treats words as square objects, but perhaps the

individual marks of the symbols could be brought into the visual notation, through experiments

in typography. For example, a cursive font could be usedwhere the trajectory of the final stroke

in a word is continued with a curve to flow into the leading stroke of the word it connects to.

is suggestion may turn the stomach of hardened programmers, although Texture is already

unusual in using a proportional font, complete with ligatures.

Currently there is no provision in Texture for making named abstractions, so a piece of

code cannot be used more than once without being repeated verbatim. Visual syntax for single

assignment could symbolise a section of code with a shape derived from the arrangement of

its components. at shape would become an ideographic symbol for the code, and then be

duplicated and reused elsewhere in the program using the mouse.

Texture is inspired by the ReacTable, but does not feature any of the ReacTable’s tangible

interaction. Such tabletop interfaces offer a number of advantages over keyboard-and-mouse

interfaces, in particular multitouch, allowing movement of more than one component at once.

Multi-touch tablet computers share this advantage while avoiding some of the tradeoffs of tan-

gible interfaces. Much of the ReacTable technology is available as an open research platform,

and could be highly useful in this area of experimentation.

Currently the only output of Texture is music rendered as sound, with no visual feedback.

ere is great scope for experimentation in visualising the paerns in the code, making it easier

for live coders and audience members to connect musical events and transformations with
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particular sections of the code. One approach would be to visualise paern flowing between

nodes, again inspired by the ReacTable, however as Texture is based upon pure functions rather

than dataflow graphs, it presents a rather different design challenge. Texture could be adapted

to allow any Haskell program to be wrien, and so could be applied to other domains, such as

digital signal processing and visual animation. is would again place different challenges on

the visualisation of results.

Most generally, and perhaps most importantly, we look towards proper analysis of lay

audience code comprehension, grounding further development with beer understanding of

what the design challenges are.

5.7 Discussion

We have considered programming languages as rich notations with both visual and linguis-

tic aspects. Many computer musicians write words to describe their music, for computers to

translate to sound. e computer musicians have become comfortable with this rather odd

process in private, but perhaps found it difficult to explain to their parents. Simply by project-

ing their interfaces, live coders have brought this oddity out in public, and must deal with the

consequences of bringing many issues underlying computer music to the surface.

Live coding may be understood as a dual activity of language and spatial perception. We

have seen how humans have the capacity to integrate both simultaneously, showing that the act

of live coding, and perhaps the audience reception of it, can be realised and felt simultaneously

as both musical language and musical movement.

By placing the design of live coding languages in a psychological and analytical context,

we have aimed to support future directions in live coding design. e introduction of Texture

takes a step in this direction, and we hope demonstrates the exciting ground waiting for future

language designers to explore.

114



C 6

Creativity

From symbols up, each of the preceding three chapters has built a layer of abstraction on top of

the previous one. e next layer takes us above the activity of notation, to the broader context

of creative artistic activity. How can programming fit into a creative process?

6.1 Programmer culture

From early beginnings programmers have pulled themselves up by their bootstraps, creating

languages within languages in which great hierarchies of interacting systems are expressed.

Much of this activity has been towards military, business or scientific goals. However there

are numerous examples of alternative programmer subcultures forming around fringe activity

without obvious practical application. e Hacker culture at MIT was an early example (Levy,

2002), a group of male model-railway enthusiasts and phone network hackers who dedicated

their lives to exploring the possibilities brought by the new, digital computers. Many other pro-

gramming cultures have since flourished. Particularly strong and long-lived is the demoscene,

a youth culture engaged in pushing computer video animation to the limits of available hard-

ware, using novel algorithmic techniques to dazzling ends. e demoscene spans much of the

globe but is particularly strong in Nordic countries, where annual meetings aract thousands

of participants (Polgár, 2005). Another, perhaps looser programmer culture is that of Esoteric

Programming Languages discussed in §5.5. e authors of these languages push against the

boundaries of programming, providing insight into the constraints of mainstream program-

ming languages.

Members of the demoscene and esoteric language cultures do not necessarily self-identify

as artists, despite their relentless search for novel approaches. However there are cultures

of programmers who do call themselves artists, now extending into their second and third

generations. Early on, communities of experimental artists looking for new means of expres-
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Figure 6.1: e robots of the Al-Jazari language by Dave Griffiths (McLean et al., 2010). Ea robot has a
thought bubble containing a small program, edited through a game pad.

sion grew around computers as soon as access could be gained. In Great Britain interest dur-

ing the 1960s grew into the formation of the Computer Arts Society (CAS; Brown et al., 2009,

www.computer-arts-society.org). However aer a creative boom CAS entered a period

of dormancy in the mid 1980s, perhaps drowned out by extreme commercial growth in the

computer industry at that time. CAS has however been revived in more recent years, encour-

aged by a major resurgence of soware as a medium for the arts. is resurgence has seen

a wealth of new programming environments designed for artists and musicians, such as Pro-

cessing (Reas and Fry, 2007), SuperCollider (McCartney, 2002), ChucK (Wang and Cook, 2004),

VVVV (http://vvvv.org) and OpenFrameworks (http://openframeworks.cc), joining

more established environments such as the Patcher languages PureData and Max (§5.3.1).

e creators of programming languages for the arts are oen artist-programmers them-

selves, motivated to support their own work. is results in experimental features which re-

semble those of esoteric languages, for example unique representations of time are central

features of ChucK and SuperCollider (§5.2). Languages created by artist-programmers have

themselves been exhibited as interactive works of art, such as the Al-Jazari music program-

ming environment shown in Figure 6.1 (McLean et al., 2010).

e design of programming languages for the arts is an active research domain, with new

approaches still emerging, bringing important psychological issues to the fore. As computers
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enter almost every aspect of our lives, few would now deny that people can be creative using

computer tools. Against all this context it is clear to see the activity of programming as poten-

tially being highly creative. Before we discuss the creative processes of programming in depth

however, we should describe what we mean by creative behaviour.

6.2 Concepts in creative behaviour

Creativity is assumed to be a mark of the human species, and something that we all do as part

of a healthy approach to life. e alternative to a creative life is a mechanistic one, lacking in

introspection and control over the self-imposed rules we live by. However, the word creative

is used to define a wide range of behaviour, for example a creative person in the advertising

industry is something rather more specific than a creative person in the arts. So what exactly

do we mean by creativity? We might try to define it in terms of qualities of the artefacts that

creativity produces. However we judge the creativity of an artefact not only by its intrinsic

value, but also its novelty in a culture, and perhaps how much it surprises us. at is, we judge

an artefact not just by any physical manifestation, but primarily the concepts behind it. To

understand creativity then, we should focus on the conceptual activity behind creative works.

In §2.2.5, we took the definition of a concept as “a mental representation of a class of things”

(Murphy, 2002, p.5). By asserting that creativity is a conceptual process, we therefore imply

that creativity is not in the production of things, but rather in the organisation of things into

novel classes. If we recognise creativity in an artefact, it is because its properties allow us to

infer a novel conceptual class of which it is a member.

If concepts are the primary output of the creative process, we should define how and where

we think they are represented. In our review of conceptual representation (§2.2) we shared

the view that concepts are structured in relation to perception; that basic concepts arise from

recurrent states in sensorimotor systems, which in turn form the building blocks of higher level

abstract thought. When we creatively generate novel, valued concepts, we are literally altering

our perception of the world and of ourselves.

Exactly how a concept is represented in the human mind is an open question. Here we

take the view that a conceptual property is represented by a single best possible example, or

prototype. In accordancewith the theories reviewed in chapter 2, these prototypes arise through

perceptual states, within the geometry of quality dimensions. To ground the discussion in

music, consider a piece of jazz, where jazz is the concept and the particular composition is

an instance of that concept. e musician, in exploring the boundaries of jazz, then finds a

piece beyond the usual rules of jazz. rough this process, the boundaries of a music genre
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may be redefined to some degree, or if the piece is in particularly fertile new ground, a new

sub-genre of jazz may emerge. Indeed a piece of music which does not break boundaries in

some way could be considered uncreative. ese changes in conceptual structure first happen

in an individual, which in the case of music is the composer or improviser. Another individual’s

conceptual structures may be modified to accord with a composer’s new concept by listening

to the instance of the new musical concept, although success is only likely if the individual

already shares some of the music cultural norms of the creator.

Wiggins (2006a,b) formalises the Creative Systems Framework (CSF) based on the work of

Boden (2003), in order to provide a framework for discussing creativity and comparing creative

systems. e CSF characterises creativity as a search in a conceptual space, according to a mu-

table set of rules. Treating creativity as a search is much the same as treating it as construction,

but implies that creativity takes place within defined boundaries. Creativity is oen discussed

using the metaphor of exploration, around where boundaries are defined and broken, and the

CSF allows us to talk about such behaviour within its well defined terms.

As a comparative framework, the CSF is agnostic to issues of representation, and so may be

applied to both analogue and discrete conceptual representations. In taking the Gärdenforsian

approach to conceptual representation (§2.2.5), we argue that creativity involves employing

visuospatial cognitive resources to navigate an analogue search space with geometric structure.

We will discuss creative processes of programming in terms of the mechanisms of the CSF later

in §6.5.

e subject of creativity within the computer arts field is mired in confusion and miscon-

ception. e perennial question of authorship is always with us: if a computer program outputs

art, who has made it, the human or the machine? Positions on creativity through computer

programming tend towards opposite poles, with outright denials of creativity at one end and

outlandish claims of unbound creativity in generative art at the other. Here we look for clarity

through our anthropocentric view, with focus on programming as the key activity behind com-

puter art. We view the artist-programmer as engaged in inner human relationships between

perception, cognition and computation, and relate this to the notation and operation of their

algorithms, particularly in the context of live coding.

6.3 Creative Processes

Creative processes are rather more mysterious than computer processes, which we like to

think of as well defined, predictable and subservient to human control. For artist-programmers

though, the computer process is a component of their creative process. What then is the rela-
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tionship between an artist, their creative process, their program, and their artistic works? We

will look for answers against the backgrounds of psychology, cognitive linguistics, computer

science and computational creativity, but first from the perspective of an artist.

e painter Paul Klee describes a creative process as a feedback loop:

“Already at the very beginning of the productive act, shortly aer the initial
motion to create, occurs the first counter motion, the initial movement of recep-
tivity. is means: the creator controls whether what he has produced so far is
good. e work as human action (genesis) is productive as well as receptive. It is
continuity.” (Klee, 1953, p. 33, original emphasis)

is is creativity without planning, a feedback loop of making a mark on canvas, perceiving

the effect, and reacting with a further mark. Being engaged in a tight creative feedback loop

places the artist close to their work, guiding an idea to unforeseeable conclusion through a flow

of creative perception and action. Klee writes as a painter, working directly with his medium.

Artist-programmers instead work using computer language as text representing their medium,

and it might seem that this extra level of abstraction could hinder creative feedback. Wewill see

however that this is not necessarily the case, beginning with the account of Turkle and Papert

(1992), describing a bricolage approach (aer Lévi-Strauss, 1968) to programming by analogy

with painting:

e bricoleur resembles the painter who stands back between brushstrokes,
looks at the canvas, and only aer this contemplation, decides what to do next.
Bricoleurs use a mastery of associations and interactions. For planners, mistakes
are missteps; bricoleurs use a navigation of mid-course corrections. For planners,
a program is an instrument for premeditated control; bricoleurs have goals but set
out to realize them in the spirit of a collaborative venture with the machine. For
planners, geing a program to work is like “saying one’s piece”; for bricoleurs, it
is more like a conversation than a monologue.

(Turkle and Papert, 1990, p. 136)

Turkle and Papert describe the bricolage programmer as forming ideas while working in

the text editor, making edits in reaction to edits, rather than planning their work in advance.

is accords with Klee’s account, and may also be related to that of Reflective Practice from

professional studies (Schon, 1984). Reflective practice distinguishes the normal conception of

knowledge, as gained through study of theory, from that which is learnt, applied and reflected

upon while ‘in the work’. As such, practice is not ruled by theory, but embedded in activity.

Reflective practice has strong influences in professional training, particularly in the educational

and medical fields. is suggests that the present discussion could have relevance beyond our

focus on the arts.
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Although Turkle and Papert address gender issues in computer education, this quote should

not be misread as dividing all programmers into two types; while associating bricolage with

feminine and planning with male traits (although for critique of their method see Blackwell,

2006a), they are careful to state that these are extremes of a behavioural continuum. Indeed,

programming style is clearly task specific: for example a project requiring a large team needs

more planning than a short script wrien by the end user.

Bricolage programming is particularly applicable to our theme of the artist-programmer,

writing soware to work with media such as music and video animation. To ground the fol-

lowing discussion, we bring an image of a visual artist to mind, programming their work using

the Processing language environment (§5.2). Our artist begins with an urge to draw superim-

posed curved lines, having been inspired by something they saw from the train the previous

day. ey quickly come up with the following program, shown with its output below:

float rx() { return(random(width)); }
float ry() { return(random(height)); }

void draw() {
background(255);
for (int i = 0; i < 20; ++i) {

bezier(rx(), ry(), rx(), ry(),
rx(), ry(), rx(), ry());

}
}

On seeing the output of the first run, our artist is immediately struck by how hairy it looks.

anks to arbitrary placement of the curves through use of pseudo-random numbers, each time

the artist runs the program it comes up with a different form. Over a few runs, the artist notices

the occasional suggestion of a handwrien scribble. Intrigued, they change their program to

join the curves together, in order to remove the hairiness and accentuate the scribble:

void draw() {
background(255);
float x = rx(); float y = ry();
for (int i = 0; i < 5; ++i) {

float x1 = rx(); float y1 = ry();
bezier(x, y, rx(), ry(),

rx(), ry(), x1, y1);
x = x1; y = y1;

}
}

e end-points of the curves are still placed arbitrarily, but they now begin at the point

where the previous curve ended, resulting in a continuous line. Aer a few more runs, our
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artist begins to perceive a leer-like quality in the scribble. ey decide to try writing them

across the page, grouped into word-like forms:

float letterSpace = 30;

float rx() { return(random(letterSpace + 10)); }
float ry() { return(random(height - 10)); }
int rWordlen() { return(3 + int(random(4))); }

void draw() {
background(255);
int letters = (int) (width / letterSpace) - 4;
int wordLen = rWordlen();
int word = 0;
float x = rx(); float y = ry();
for (int letter = 0; letter < letters; ++letter) {

float ox = letter ∗ letterSpace + word ∗
letterSpace;

if (wordLen -- == 0) {
wordLen = rWordlen();
word++;

}
for (int i = 0; i < 3; ++i) {

float x1 = rx() + ox; float y1 = ry();
bezier(x, y, rx() + ox, ry(),

rx() + ox, ry(), x1, y1);
x = x1; y = y1;

}
}

}

e output has a handwrien quality, appearing almost readable, a quality of ‘automatic

writing’ used by mystics to supposedly channel the spirit world. is may bring further con-

ceptual development to our artist’s mind, but at this point we will leave them pondering.

Our case study is somewhat simplistic, and is not intended to illustrate either great art or

great code. However it does trace a creative process of sorts, as carried out by the present

author. We are not suggesting that the algorithms themselves are creative, any more than we

would suggest that paint is creative. Multiple executions helped our artist perceive qualities

in the output, but it was the artist’s perception, and not the algorithm that discovered value.

It is clear that our programmer, like a painter, could not understand their code until they had

perceived its output, that the act of perception was itself creative, and that the concept they

were trying to encode was continually changing in response to their perception of the results.

We seek to understand this process in greater depth in the following sections.
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Figure 6.2: e process of action and reaction in bricolage programming

6.3.1 Creative Process of Bricolage

“e source of the exhilaration associated with computer programming is the
continual unfolding within the mind and on the computer of mechanisms ex-
pressed as programs and the explosion of perception they generate.” Alan Perlis
(foreword to Abelson and Sussman, 1996)

Figure 6.2 characterises bricolage programming as a creative feedback loop encompassing

the wrien algorithm, its interpretation, and the programmer’s perception and reaction to its

output or behaviour. Creative feedback loops are far from unique to programming, but the

addition of the algorithmic component makes an additional inner loop explicit between the

programmer and their text. At the beginning, the programmer may have a half-formed con-

cept, which only reaches internal consistency through the process of being expressed as an

algorithm. e inner loop is where the programmer elaborates upon their imagination of what

might be, and the outer where this trajectory is grounded in the pragmatics of what they have

actually made. rough this process both algorithm and concept are developed, until the pro-

grammer feels they accord with one another, or otherwise judges the creative process to be

finished.

e lack of forward planning in bricolage programming means the feedback loop in Figure

6.2 is self-guided, possibly leading the programmer away from their initial motivation. is

straying is likely, as the possibility for surprise is high, particularly when shiing from the

inner loop of implementation to the outer loop of perception. e output of a generative art

process is rarely exactly what we intended, and we will later argue in §6.5 that this possibility

of surprise is an important contribution to creativity.
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Representations in the computer and the mind are evidently distinct from one another.

Computer output evokes perception, but that percept will both exclude features that are ex-

plicit in the output and include features that are not, due to a range of effects including aen-

tion, knowledge and illusion. Equally, a human concept is distinct from a computer algorithm.

Perhaps a programwrien in a declarative rather than imperative style is somewhat closer to a

concept (§4.3). But still, there is a clear line to be drawn between a string of discrete symbols in

code, and the morass of both discrete and continuous representations which underlie cognition

(§2.2).

ere is something curious about how the programmer’s creative process spawns a sec-

ond, computational process. In an apparent trade-off, the computational process is lacking in

the broad cognitive abilities of its author, but is nonetheless both faster and more accurate at

certain tasks by several orders of magnitude. It would seem that the programmer uses the pro-

gramming language and its interpreter as a cognitive resource, augmenting their own abilities

in line with the extended mind hypothesis (Clark, 2008).

6.4 Symbols and Space

We have seen argued throughout this thesis that human conceptual representation centres

around perception. Algorithms on the other hand are represented in discrete symbolic se-

quences, as is their output, which must go through some form of digital-to-analogue conver-

sion before being presented to our sensory apparatus, for example as light from a monitor

screen or sound pressure waves from speakers, triggering a process we call observation. Recall

the artist-programmer from our case study (§6.3), who saw something not represented in the

algorithm or even in its output, but only in their own perception of the output; observation is

itself a creative act.

e remaining component to be dealt with from Figure 6.2 is that of programmers’ concepts

(§2.2.5). Figure 6.2 shows concepts mediating between spatial perception and discrete algo-

rithms, leading us to ask; are concepts represented more like spatial geometry, like percepts, or

symbolic language, like algorithms? Our focus on metaphor leads us to take the former view,

that conceptual representation is grounded in perception and the body. is view is taken from

Conceptual Metaphor eory (§2.2.6), in particular that concepts are primarily structured by

metaphorical relations, the majority of which are orientational, understood relative to the hu-

man body in space or time. In other words, the conceptual system is grounded in the perceptual

system.

Gärdenforsian conceptual spaces (§2.2.5) are compelling when applied to concepts related
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to bodily perception, emotion andmovement. However, it is difficult to imagine taking a similar

approach to computer programs. What would the quality dimensions of a geometrical space

containing all computer programs be? ere is no place to begin to answer this question;

computer programs are linguistic in nature, and cannot be coherently mapped to a geometrical

space grounded in perception. Again we return to the point that spatial representation is not

in opposition to linguistic representation; they are distinct but support one another. is is

clear in computing, hardware exists in our world of continuous space, but thanks to reliable

electronics, conjures up a linguistic world of discrete computation. Ourminds are able to do the

same, for example by computing calculations in our head, or encoding concepts into phonetic

movements of the vocal tract or alphabetic symbols on the page. We can think of ourselves as

spatial beings able to simulate a linguistic environment to conduct abstract thought and open

channels of communication. On the other hand, a piece of computer soware is a linguistic

being able to simulate spatial environments, perhaps to create a game world or guide robotic

movements, both of which may include some kind of model of human perception.

6.5 Components of creativity

We now have grounds to characterise how the creative process operates in bricolage program-

ming. For this we employ the Creative Systems Framework (CSF; §6.2), introducing its terms

as we go.

Within the CSF, a creative search has three key aspects: the conceptual sear space it-

self, traversal of the space and evaluation of concepts found in the space. In other words,

creativity requires somewhere to search, a manner of searching, and a means to judge what

is found. However, creative behaviour may make use of introspection, self-modification and

need boundaries to be broken. at is, the constraints of search space, traversal and evaluation

are not fixed, but are examined, challenged and modified by the creative agent following (and

defined by) them. e CSF characterises particular kinds of aberration from a conceptual space,

and approaches to addressing them.

Using the terminology of Gärdenfors (2000), the search spaces of the CSF are themselves

concepts, defining regions in a universal space defined by quality dimensions. Transforma-

tional creativity then is a geometrical transformation of these regions, motivated by a process

of searching through and beyond them. is means that a creative agent may creatively push

beyond the boundaries of the search as we will see. While acknowledging that creative search

may operate over linguistic search spaces, we focus on geometric spaces grounded in percep-

tion. is follows our focus on artistic bricolage described in §6.3, but for an approach unifying
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linguistic and geometric spaces see Forth et al. (2010).

We may now clarify the bricolage programming process introduced in §6.3.1 within the

CSF. As shown in Figure 6.3, the search space defines the programmer’s concept, being their

current artistic focus structured by learnt techniques and conventions. e traversal strategy is

the process of aempting to generate part of the concept by encoding it as an algorithm, which

is then interpreted by the computer. Finally, evaluation is a perceptual process in reaction to

the output.

Algorithm

Interpret

Percept

Elaborate

Encode
Concept

Observe

React

Output

Evaluation Traversal

Sear
space

Figure 6.3: e process of action and reaction in bricolage programming from Figure 6.2, showing the three
components of the Creative Systems Framework, namely sear space, traversal strategy and evaluation.

In §6.3, we alluded to the extended mind hypothesis (Clark, 2008), claiming that bricolage

programming takes part of the human creative process outside of the mind and into the com-

puter. e above makes clear what we claim is being externalised: part of the traversal strat-

egy. e programmer’s concept motivates a development of the traversal strategy, encoded

as a computer program, but the programmer does not necessarily have the cognitive ability

to fully evaluate it. at task is taken on by the interpreter running on a computer system,

meaning that traversal encompasses both encoding by the human and interpretation by the

computer.

e traversal strategy is structured by the techniques and conventions employed to convert

concepts into operational algorithms. ese may include design paerns, a standardised set

of ways of building that have become established around imperative programming languages.

Each design paern identifies a kind of problem, and describes a generalised structure towards
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a solution.1

e creative process is constrained by the programmer’s concept of what is a valid end

result. is is shaped by the programmer’s current artistic focus, being the perceptual qualities

they are currently interested in, perhaps congruent with a cultural theme such as a musical

genre or artistic movement. Artists oen speak of self-imposed constraints as providing cre-

atively fertile ground. In terms of a creative search such constraints form the boundary of a

search space. It is possible for a search to traverse beyond that boundary, thus finding invalid

concept instances, a scenario called aberration (Wiggins, 2006a, §5.2.2). In such instances trans-

formational creativity can be triggered. For example, if an invalid yet (according to evaluation

rules) valued instance is found, then the concept should be enlarged to include the instance.

An invalid concept instance which is not valued indicates that our traversal strategy is flawed

and should be modified to avoid such instances in the future. A single traversal operation may

result in both valid and invalid instances being found, indicating that both the traversal rules

and the definition of the concept should be modified.

e artist in our earlier case study was working within the concept of bezier curves, but

when curve endpoints happened to join, they perceived some things outside that concept – a

squiggle and some hair. ey made a value judgement, and decided to change their concept

in response, which we consider as a case of transformational creativity. ey then made edits

to their source code (the traversal strategy), in order to try to generate output which evoked

perceptual experiences closer to their concept. is may seem a minor case of transformational

creativity, but indeed we contend that much creativity is quite ordinary human behaviour;

humans apply creativity at all levels of life.

Our case study shows where a programmer may set themselves up for being surprised by

the results. is is not only due to the use of pseudo-random numbers, aer all noise is rarely

a source of surprise; in information theoretic terms noise has maximal information content,

but in practice the lack of form quickly results in fatigue or aention shi. It is rather due

to the linguistic abstraction of an idea that consists of fragments of perceptual symbols. In

other words, because the traversal strategy of a programmer includes external notation and

computation, they are likely to be less successful in writing soware that meets their precon-

ceptions, or in other words more successful in being surprised by the results. A creative process

that includes external computation will follow a less predictable path as a result. Nonetheless

the process as a whole has the focus of a concept, and is guided by value in relation to a rich

perceptual framework, and so while unpredictable, this influence is far from random, being

meaningful interplay between language and perceptual experience. e human concepts and

1is structural heuristic approach to problem solving is inspired bywork in the field of urban design (Alexander
et al., 1977).
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algorithm are continually transformed in respect to one another, and to perceptual affect, in

creative feedback.

According to our embodied view, not only is perception crucial in evaluating output within

bricolage programming, but also in structuring the space inwhich programs are conceptualised.

Indeed if the embodied view of conceptual metaphor theory (§2.2.6) holds in general, the same

would apply to all creative endeavour. From this we find a message for the field of compu-

tational creativity: a prerequisite for an artificial creative agent is in acquiring computational

models of perception sufficient to both evaluate its own works and structure its conceptual sys-

tem. Only then will the agent have a basis for guiding changes to its own conceptual system

and generative traversal strategy, able to modify itself to find artefacts that it was not pro-

grammed to find, and place value judgements on them. Such an agent would need to adapt to

human culture in order to interact with shiing cultural norms, keeping its conceptual system

and resultant creative process coherent within that culture. For now however this is wishful

thinking, and we must accept generative computer programs which extend human creativity,

but are not creative agents in their own right.

6.6 Programming in Time

“She is not manipulating the machine by turning knobs or pressing buons.
She is writing messages to it by spelling out instructions leer by leer. Her
painfully slow typing seems laborious to adults, but she carries on with an ab-
sorption that makes it clear that time has lost its meaning for her.” Sherry Turkle
(2005, p. 92), on Robin, aged 4, programming a computer.

Having investigated the representation and operation of bricolage programming we now

examine how the creative process operates in time. Dijkstra might argue that considering com-

puter programs as operating in time at all, rather than as entirely abstract logic, is itself a form

of the anthropomorphism examined in §2.3. However from the above quotation it seems that

Robin stepped out of any notion of physical time, and into the algorithm she was composing,

entering a timeless state. is could be a state of optimum experience, the flow investigated

by Csikszentmihalyi where “duration of time is altered; hours pass by in minutes, and minutes

can stretch out to seem like hours” (Csikszentmihalyi, 2008, p. 49). Perhaps in this state a pro-

grammer is thinking in algorithmic time, aending to control flow as it replays over and over

in their imagination, and not to the world around them. Or perhaps they are not aending

to the passage of time at all, thinking entirely of abstract logic, in a timeless state of building.

In either case, it would seem that the human is entering time relationships of their soware,

rather than the opposite, anthropocentric direction of soware entering human time. While
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programmers can appear detached from physical time, there are ways in which the time-lines

of program development and operation may be united, as we saw in our discussion of notation

in time (§5.2).

Temporal relationships are generally not represented in source code. When a programmer

needs to do so, for example as an experimental psychologist requiring accurate time mea-

surements, or a musician needing accurate synchronisation between processes, they run into

problems of accuracy and latency. With the wide proliferation of interacting embedded sys-

tems, this is becoming a broad concern (Lee, 2009). In commodity systems time has been de-

centralised, abstracted away through layers of caching, where exact temporal dependencies

and intervals between events are not deemed worthy of general interest. Programmers talk

of “processing cycles” as a valuable resource which their processes should conserve, but they

generally no longer have programmatic access to the high frequency oscillations of the central

processing units (now, frequently plural) in their computer. e allocation of time to processes

is organised top-down by an overseeing scheduler, and programmers must work to achieve

what timing guarantees are available. All is not lost however, realtime kernels are now avail-

able for commodity systems, allowing psychologists (Finney, 2001) and musicians (e.g. via

http://jackaudio.org/) to get closer to ‘physical’ time. Further, the representation of time

semantics in programming is undergoing active research in a sub-field of computer science

known as reactive programming (Ellio, 2009), ideas from which have inspired representation

of time in the Tidal language (§4.5).

6.7 Embodied programmers

What we have seen provides strong motivation for addressing the particular needs of artist-

programmers. ese include concerns of workflow, where elapsed time between source code

edits and program output slows the creative process. Concerns of programming environment

are also important, which should be optimised for the presentation of shorter programs in their

entirety to support bricolage programming, rather than hierarchical views of larger codebases.

Perhaps most importantly, we have seen motivation for the development of new programming

languages, pushing the boundaries to greater support artistic expression.

From the embodied view we have taken, it would seem useful to integrate time and space

further into programming languages. In practice integrating time can mean on one hand in-

cluding temporal representations in core language semantics, and on the other uniting devel-

opment time with execution time, as we have seen with interactive programming. Temporal

semantics and live coding both already feature strongly in some programming languages for
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the arts, as we saw in §6.6, but how about analogous developments in integrating geometric

relationships into the semantics and activity of programming? It would seem the approaches

shown in Nodal, the ReacTable and Texture described in chapter 5 are showing theway towards

greater integration of computational geometry and perceptual models into programming lan-

guage. is is already serving artists well, and provides new ground for visual programming

language research to explore.

Earlier we quoted Paul Klee (§6.3), a painter whose production was limited by his two

hands. e artist-programmer has different limitations, but shares what Klee called his limita-

tion of reception, by the “limitations of the perceiving eye”. is is perhaps a limitation to be

expanded but not overcome, rather celebrated and fully explored using all we have, including

our new computer languages. We have characterised a bricolage approach to artistic program-

ming as an embodied, creative feedback loop. is places the programmer close to their work,

grounding discrete computation in orientational and temporal metaphors of their human ex-

perience. However the computer interpreter extends the programmer’s abilities beyond their

own imagination, making unexpected results likely, leading the programmer to new creative

possibilities.

6.8 Live Coding in Practice

Two live coding systems have been introduced in this thesis, the Tidal paern DSL (§4.5) and

the related visual language Texture (§5.6). We have discussed technical aspects of live coding in

the process, but until now have not discussed the creative practice of live coding. e term live

coding emerged around 2003, to describe the activity of group of practitioners and researchers

who had begun developing new approaches to making computer music and video animation

(Collins et al., 2003; Ward et al., 2004; Blackwell and Collins, 2005; Rohrhuber et al., 2005). It

is defined by Ward et al. (2004) as “the activity of writing a computer program while it runs”,

where changes to the source code are enacted by the running process without breaks in musical

or visual output. e archetypal live coding performance involves programmers writing code

on stage, with their screens projected for an audience, their code dynamically interpreted to

generate music or video.

Closely related terms are interactive, on-the-fly (Wang and Cook, 2004), conversational

(Kupka and Wilsing, 1980), just-in-time (Rohrhuber et al., 2005) and with-time (Sorensen and

Gardner, 2010) programming. Many of these terms are interchangeable, although there are dif-

ferences of technique and emphasis, for example live coding is most oen used in the context

of improvised performance of music or video animation. is context of improvised computer
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music is adopted here, and although much of the following could be related to work in live

video animation, focus on computer music is kept for brevity.

In live coding the performance is the process of soware development, rather than its out-

come. ework is not generated by a finished program, but through its journey of development

from nothing to a complex algorithm, generating continuously changingmusical or visual form

along theway. is is by contrast to generative art, popularised by the generativemusic of Brian

Eno (1996). Generative art may be understood by a gardening analogy, where processes are

composed as ‘seeds’, planted in a computer and le to ‘grow’. e random number generators

oen used to provide variation in generative processes have led to their being likened to the

construction of wind chimes, in that they are structures that are ‘played’ by sources of noise.

Like wind chimes, while generative art may constantly vary, generative systems which pro-

duce qualitative changes are rare. Output more or less follows the same style, with only a few

permutations giving an idea of the qualities of the piece. is is well illustrated by our case

study of an artist-programmer (§6.3), who ran their program a few times not to produce new

works, but to get different perspectives on the same work.

With live coding, hands-on human involvement is essential to the development of a piece.

Metaphorically speaking, rather than sowing seeds, live coders metaphorically construct plants

from scratch by splicing different plants together, modifying their DNA while they grow, and

experimenting with different ways of destroying them for artistic effect. With generative art,

onlookers are oen le to question whether the programmer or computer is the creative agent

in the artistic process. However with live coding there is no question, the programmer very

visibly provides all the rules, the human act of programming providing all creative impetus,

and the computer process extending the human range of exploration.

Live coding allows a programmer to examine an algorithm while it is interpreted, taking

on live changes without restarts. is unites the time flow of a program with that of its de-

velopment, using dynamic interpretation or compilation. Using techniques outlined in (§5.2),

live coding makes a dynamic creative process of test-while-implement possible, rather than the

conventional implement-compile-test cycle. e creative processes shown in Figures 6.2 and

6.3 still apply, but are freed from the constraints of time, with the arrows now representing

concurrent influences between components rather than time-ordered steps.

Live coding not only provides an efficient creative feedback loop, but also allows a pro-

grammer to connect soware development with time based art. is is bricolage programming

(§6.3.1) taken to a logical and artistic conclusion, particularly with archetypal ‘blank slate’ live

coding. Here risk is embraced and pre-planning eschewed, the aim being to design a program

‘in the moment’ where it is implemented and executed in the expectant atmosphere created by
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an audience.

e primary research focus around live coding practice has been upon the integration of

performance time with development time, for example in the live coding papers already cited.

is is important work, as human perception of the progression of time during the evaluation

of an algorithm has oen been deliberately ignored in computer science (§6.6). is line of

research is certainly not complete, but there are now several working approaches to improvis-

ing music through live code development. Some research emphasis has therefore moved from

time to space, that is, to the consideration of visuospatial perception within the activity and

spectacle of live coding performance.

6.8.1 “Obscurantism is dangerous. Show us your screens.”

e present section title is taken from the manifesto draed by the Temporary Organisation for

the Promotion of Live Algorithm Programming (TOPLAP; Ward et al., 2004), a group set up by

live coders to discuss and promote live coding. It neatly encapsulates a problem at the heart of

live coding; live coders wish to show their interfaces so that the audience can see the movement

and structure behind their music, however in positioning themselves against the computer

music tradition of hiding behind laptop screens (Collins, 2003), they are at risk of a charge of

greater obscurantism. Most people do not know how to program computers, and many who

do will not know the particular language in use by a live coder. So, by projecting screens, do

audience members feel included by a gesture of openness, or excluded by a gibberish of code

in an obscure language? Do live coding performances foster melding of thoughts between

performer and audience, or do they cause audience members to feel stupid? Audiences have

not yet been formally surveyed on this issue, but anecdotal experience suggests both reactions

are possible. A non-programmer interviewee in a BBC news item (“Programming, meet music”,

28th August 2009) reported ignoring projected screens and just listening to the music, and less

ambiguous negative reactions have been rumoured. On the other hand, a popular live coding

tale has it that aer enjoying a live coding performance by Dave Griffiths in Brussels (FoAM

studios, 17th December 2005), a non-programmer turned to their lover and was overheard to

exclaim “Now I understand! Now I understand why you spend so much time programming.”

Partly in reaction to the issue of inclusion, a new direction of research into visual program-

ming has emerged from live coding practice, evident in the systems reviewed and introduced

in the previous chapter. e challenge is to find new ways of notating programs suitable not

only for containing the expressions of a well-practiced live coder, but for doing so in a way

meaningful to an audience.
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6.8.2 Cognitive Dimensions of Live Coding

Blackwell and Collins (2005) have examined live coding with respect to the Cognitive Dimen-

sions of Notation (CDN), using it to compare the ChucK language for programming on-the-fly

computer music (Wang and Cook, 2004) with the commercial Ableton Live production so-

ware. ChucK, and by implication live coding in general, does not come off particularly well.

It has low on the dimensions of visibility, closeness of mapping and role-expressiveness, is

error-prone and requires hard mental operations in part to deal with its high level of ab-

straction. It would seem that the progressive evaluation and representational abstraction

offered by ChucK come at a cost. Nonetheless, these are costs that many are willing to over-

come through rigorous practice regimes reminiscent of instrumental virtuosos (Collins, 2007).

ey are willing to do so because abstraction, while taking the improviser away from the direct

manipulation that instrumentalists enjoy, allows them to focus on the compositional structure

behind the piece. Being able to improvise music by manipulating compositional structure in

theoretically unbound ways is too aractive a prospect for some to ignore.

Established norms place the live coder in a stage area separate from their audience mem-

bers2, who depending on the situation, may listen and watch passively or interact enthusiasti-

cally, perhaps by dancing, shouting or screaming. We therefore have two groups to consider,

the performers needing towork ‘in themoment’ without technical interruptions thatmay break

creative flow (Csikszentmihalyi, 2008), and the audience members needing to feel included in

the event, while engaged in their own creative process of musical interpretation (§4.4). ere

is a challenge then in reconsidering live coding interfaces, creating new languages positioned

at a place within the CDN well suited for a broader base of musicians and audiences who may

wish to engage with them. e question is not just how musicians can adapt to programming

environments, but also the inverse; how may programming environments, oen designed to

meet the needs of business and military institutions, be rethought to meet the particular needs

of artists? First, we should consider what those needs might be.

An interesting cognitive dimension with respect to live coding is error-proneness. ere

are different flavours of error, some of which are much celebrated in electronic music, for

example the glit genre grew from an interest in mistakes and broken equipment (Cascone,

2000). In improvisation, an unanticipated outcome can provide a creative spark that leads a

performance in a new direction. We would classify such desirable events as semantic errors,

in contrast with syntactic errors which lead to crashes and hasty bug-fixing.

In terms of the CDN, bricolage programming requires high visibility of components, in

2Performance norms are of course extensively challenged both inside (Rohrhuber et al., 2007) and outside (Small,
1998) live coding practice.
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particular favouring shorter programs that fit on a single screen, and avoiding unnecessary

abstraction. Here is a conflict – as noted above abstraction sets live coding apart from other

approaches to improvisation in computer music, but also acts as an obstacle to bricolage pro-

gramming. We are pulled in different directions, and so look for the happiest medium, a com-

mon result from taking a CDN perspective. Some programmers, known in some quarters as

architecture astronauts, enjoy introducing many layers of abstraction that only serve to ob-

fuscate (Spolsky, 2004). Bricolage programmers are the opposite in wanting to be as close to

their work as possible. is is not however a case of removing all abstraction, but finding the

right abstraction for the work. Programming aer all is an activity that takes place somewhere

between electric transistors and lambda calculus – the trick is finding the right level of abstrac-

tion for the problem domain (§4.3). Accordingly a computer musician may find having to deal

with individual notes a distraction, and that a layer of abstraction above them provides the

creative surface where they can feel closest to their composition.

6.9 Live coders on computational creativity

Creativity is oen touched upon in the study of music, but rarely approached in detail. Mu-

sicians may worry that analysing their creative processes may somehow spoil them, as if self

reflection can be destructive if approached in too formal a manner. e many points of view

as to the nature of creativity, with common disagreement, may lead a scholar to lose interest

and look for a beer defined field of research. However such an important subject deserves

aention, and light is being thrown by work within sub-fields of philosophy, psychology and

artificial intelligence, which each contribute to form the cross-disciplinary field of computa-

tional creativity.

A survey was carried out with the broad aim of gathering ideas for study of computational

creativity from a live coding perspective. An on-line discussion group for live coders hosted

by the Temporary Organisation for the Promotion of Live Algorithm Programming (TOPLAP;

Ward et al., 2004) was asked to fill out an on-line survey. To encourage honest responses the

survey was anonymous, and demographic information was not collected. Discussion of cre-

ativity can revolve around ill-defined terms and invite prejudice. For this reason, the word

‘creativity’ was not used in the invitation or survey text, and questions addressing issues of

creativity were mixed with general questions about live coding. A total of 32 completed the

survey (although not all answered every question), and 30 of whom indicated at the end that

they were happy for their answers to be published under a creative commons aribution li-

cense. e survey and responses were in English as the language used by the discussion group,
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although for several this was a second language.

6.9.1 e subjects

e respondents were a broad cross-section of live coders, with users of the six pre-eminent

live coding environments represented, between five and fourteen for each system (many had

used more than one). A large proportion (22/32) had used one of the listed classes of traditional

musical instruments, with comments suggesting a higher percentage would have resulted if

electronic instruments were included. From this we can assume a group with a generally rich

musical background. Relatedly, almost all (30/32) of subjects live coded music, whereas only a

small proportion (6/32) live coded video animation; live coding would appear to currently be a

music led culture. ere were a diverse range of approaches to the question of how to define

live coding in one sentence, the results are rather unquantifiable but the reader is referred to

Appendix A.1 to enjoy the responses. While the responses show some diversity of approach

to live coding, because the subjects had all used at least one of the main languages it is safe to

assume that they are working to largely the same technical definition.

6.9.2 Creating language

Computer users oen discuss and understand computer programs as tools, helping them do

what they need efficiently and without geing in the way. For a programmer it would instead

seem that a computer language is an immersive environment to create work in. Indeed a suite

of source code editing soware is collectively known as an Interactive Development Environ-

ment (IDE). It is interesting then to consider to what extent live coders adapt their computer

languages, personalising their environments, perhaps in order to aid creativity. Over two thirds

(21/32) collected functions into a library or made an extensive suite of libraries. is is analo-

gous to adding words to a language, and shows the extent of language customisation. A smaller

proportion (6/32) had gone further to implement their own language interpreter and smaller

number still (5/32) had designed their own language. at these artists are so engaged with

making fundamental changes to the language in which they express their work is impressive.

6.9.3 Code and style

From the perspective of computational creativity, it is interesting to examine the relationship

that live coders have with their code. An aempt at quantifying this was made by asking,

“When you have finished live coding something you particularly like, how do you feel towards

the code you have made (as opposed to the end result)?” Over half (17/32) indicated that code

resulting from a successful live coding session was a description of some aspect of their style.
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is suggests that many feel they are not encoding a particular piece, but how to make pieces in

their own particular manner. Around the same number (15/32) agreed that the code describes

something they would probably do again, which is perhaps a rephrasing of the same question.

A large number, (24/32) answered yes to either or both questions. ere are many ways in

which these questions can be interpreted, but overall this suggests that many subjects feel they

have a stylistic approach to live coding that persists across live coding sessions, and that this

style is somehow represented in the code they make.

6.9.4 Live coding as a novel approa

e subjects were asked the open question “What is the difference between live coding a piece

of music and composing it in the sequencer (live coding an animation and drawing one)? In

other words, how does live coding affect the way you produce your work, and how does it affect

the end result?” e answers are difficult to summarise, and so again the reader is directed to

Appendix A.2 to read the full responses. Some interesting points relevant to computational

creativity are selectively quoted for comment here.

“I have all but [abandoned] live coding as a regular performance practice, but
I use the skills and confidence acquired to modify my soware live if I get a new
idea while on stage.”

is admission, that geing new ideas on stage is infrequent, makes an important as well

as humble point. In terms of the Creative Systems Framework, we can say that live coding

is useful in performance if you need to modify your conceptual space (the kind of work you

want to make), or your traversal strategy (the way you try to search for or make it). If you are

content with having both fixed in advance, then live coding is not warranted. In other words,

live coding is useful for invoking transformational creativity, although as with this test subject,

transformational creativity is not always desirable in front of a paying, risk-averse audience.

“When I work on writing a piece … I can perfect each sound to be precisely as
I intend it to be, whereas [when] live coding I have to be more generalised as to
my intentions.”

is respondent is making the point that live coders work at least one level of abstraction

away from enacting individual sounds.

“Perhaps most importantly the higher pace of livecoding leads to more impul-
sive choices which keeps things more interesting to create. Not sure how oen
that also creates a more interesting end result but at least sometimes it does.”
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is is interesting with reference to the creative feedback loop of bricolage programming

(§6.3.1). Live coding allows a change in code to be heard or seen immediately in the output,

with no forced break between action and reception. is is in stark contrast to those whose

experience of soware development as slow and arduous.

“Live coding has far less perfection and the product is more immediate. It
allows for improvisation and spontaneity and discourages over-thinking.”

is come as a surprise, as live coding has a reputation for being cerebral and over technical.

In reality, at least when compared to other soware based approaches, the immediacy of results

fosters spontaneous thought.

“Live coding is riskier, and one has to live with [unfit decisions]. You can’t just
go one step back unless you do it with a nice pirouee. erefore the end result is
not as clean as an ”offline-composition”, but it can lead you to places you [usually]
never would have ended.”

is comment is particularly incisive; the peculiar relationship that live coders have with

time does indeed give a certain element of risk. Riskier ways of making music are more likely

to produce aberrant output, not of the type you were looking for. However, where such out-

put turns out to be valuable, then you have the opportunity to redefine what you are looking

for, transforming your conceptual space. If the output turns out to be poor, then you can at

least change the way you work to avoid similarly poor output in the future; mechanisms of

transformational creativity.

“… while live coding is a performance practice, it also offers the tantalising
prospect of manipulating musical structure at a similar abstract level as ‘deferred
time’ composition. To do this effectively in performance is I think an entirely dif-
ferent skill to the standard ‘one-acoustic-event-per-action’ physical instrumental
performance, but also quite different to compositional methods which typically
allow for rework.”

is really gets to the nub of what live coding brings to the improvising artist – an altered

perspective of time, where a single edit can affect all the events which follow it.

6.9.5 Computational creativity

In using programming languages to make music, live coders have a unique perspective on the

question of computational creativity. It is interesting then to measure the extent of optimism

for computers taking a greater role in the creative process than they already do. Towards this

the subjects were given a series of statements and asked to guess when each would become
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true, with the pertinent results in Figure 6.4. Regreably there was a configuration error early

on in the surveyed period, requiring the answers of two subjects to be discarded.

Optimism for the statement “Live coding environments will include features designed to give

artistic inspiration to live coders” was very high, with just over half (14/27) claiming that was

already true, and almost all (25/27) agreeing it would become true within five years. is in-

dicates strong support for a weak form of computational creativity as a creative aid for live

coders.

Somewhat surprisingly, optimism for the stronger form of creativity suggested by “Live

code will be able to modify itself in an artistically valued manner” was also high, with two fihs

(11/28) claiming that was already possible. If that is the case, it would be appreciated if the

live code in question could make itself known. Perhaps they are referring to feedba.pl, a live

coding editor for the Perl programming language. is editor does indeed allow self-modifying

code, but we are some way off from seeing an artistic computational agent emerge from it.

More pessimism is seen in response to “A computer agent will be developed that produces a

live coding performance indistinguishable from that of a human live coder”, with a third (9/27)

saying that this will never happen. is question is posed in reference to the imitation game

detailed by Turing (1950), however our version involving musical rather than language based

imitation seems rather easier to fulfil. As one subject commented, “the test indistinguishable

from a human is very loose and there can be some very bad human live coding music.” at

would perhaps explain why half (13/27) of respondents thought the statement was either al-

ready true or would become so within five years.

6.9.6 Discussion

What if a computational approach to the musicology of live coding were to develop, where re-

searchers deconstruct the code behind live coding improvisations as part of their work? Corre-

lations between expressions in formal languages and musical form in sound could be identified,

and the development of newways of expressing newmusical forms could be tracked. If success-

ful, the result need not be a new kind of music, but could be music understood in a novel way.

Perhaps this new computational approach to understanding music that could prove invaluable

in the search for a musically creative soware agent.

In looking at creativity through the eyes of live coders, we can see some promise for com-

putational creativity even at this early stage of development of both fields. Live coders feel

their musical style is encoded in the code they write, and that their language interfaces pro-

vide them with inspiration. ey are actively developing computer languages to beer express

the music they want to make, creating computer language environments that foster creativity.
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Figure 6.4: Responses to statements s4: “Live coding environments will include features designed to give
artistic inspiration to live coders”, s5: “Live code will be able tomodify itself in an artistically valuedmanner”
and s7 “A computer agent will be developed that produces a live coding performance indistinguishable from
that of a human live coder.”

From here it is easy to imagine that live coding environments could become more involved in

the creation of higher order conceptual representations of time-based art that live coders are

concerned with. Perhaps this will provide the language, environment and application in which

the creative processes of a computational agent will one day thrive.

6.10 Slub

e band Slub begun in the year 2000, as a collaboration between Adrian Ward (http:

//www.adeward.com/) and the present author. ey both shared a desire to make music and

enthusiasm for programming, and resolved to combine them.

So if you’ve got programming skills and enjoy making music, it makes sense
to combine them - just like combining poery and integral mathematics can be
stimulating. (Adrian Ward in interview with Shulgin, 2003)

Slub established a clear aim early on, to make people dance to their algorithms. ey first

met this aim in the Paradiso club during the 2001 Sonic Acts festival in Amsterdam, the first of
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many appearances at major European festivals.

Figure 6.5: A screenshot showing a typical performance desktop used by the present author circa 2003.

An early Slub system is described in detail by Collins et al. (2003). In brief it featured a

synthesiser and early live coding system wrien by Ward, and a number of beat and bass-

line generating programs wrien by McLean. Although their primary aim was musical, Slub

enjoyed being faced with the challenge of being accepted as programmers who make music.

To this end they began projecting their screens, confronting audiences with the conceptual

overlap between their hand-craed soware and the music they produced using it.

is whole network of soware was wrien by slub to fulfil their individual
needs, forming an environment ideal to their methods of working. is brings
us to an important point – that the code is not just running in the computer. To
explain; when programmers are watching a computer execute their own programs,
the code is also executing in their minds. ey have intimate knowledge of the
process, and so can imagine it running. In this way, the code is alive in slub and
in their computers, and hopefully also in their sound and the audience too. e
music is also alive in these four places. As far as slub are concerned, code is music.
(Collins et al., 2003, pp. 323–324)

Slub were not just challenging their audiences, but also the use of computers in the arts

in general. Ward was instrumental in challenging the concept of soware as a passive ‘tool’

with his soware Auto-Illustrator (Ward et al., 2002). By drawing a satire on the widely used

Adobe Illustrator soware, Auto-Illustrator confounded expectations, making it difficult to for
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example draw a straight line. is brought aention to the aesthetic decisions built into all

soware, leading the Transmediale Soware Art jury to award it first prize in 2001. is point

was further explored by McLean with forkbomb.pl, a simple program which produced paerns

while pushing a computer system to its limits; in effect visualising low-level interactions com-

posed by human system programmers. is work was also awarded the Transmediale Soware

Art award, and both artworks were exhibited in the touring 2002/2003 Generator group show

alongside works by Sol Lewi and Yoko Ono.3

Following the formation of TOPLAP, Ward focused on live coding (creating Pure Events,

based on the Traer paradigm; Nash and Blackwell, 2011), and McLean created his own live

coding environment, the feedba.pl editor (McLean, 2004) for self-modifying code (§5.2). From

then on, Slub performed only using live coding interfaces. Having developed his own live

coding practice in parallel, Dave Griffiths (http://pawfal.org/dave/) joined Slub follow-

ing a key joint performance at Sonar festival in 2005. Dave took the Slub aesthetic in a new,

audio/visual direction, by developing game-like live coding environments for music (McLean

et al., 2010).

6.10.1 Reflections following a Slub performance

Slub performed at the Maison Rouge, Paris on the 30th September 2011, invited by the Sony

Computer Laboratory in Paris as part of their 15th anniversary celebrations. Desk recordings of

the performance are included on the enclosed DVD, which includes a mix of all three perform-

ers, and separate recordings of each performer. e present author interviewed Griffiths and

Ward in the days following the performance, to reflect upon the performance and the journey

that Slub had taken to their current practice.

Dave Griffiths (DG): [Live coding] seems to define us at the moment, although
it wasn’t always that way. I think perhaps it will grow less important with time.
e code we base performances on seems very unstable in that it’s constantly be-
ing rewrien in different languages, we individually switch between visual and
text based programming and back again - lots of lile experiments. Despite this
the music seems to grow in a independent manner, we somehow retain the knowl-
edge of where we are going during a live performance and what we are doing as
performers.

ere are two strands of development then, musical and technological. But in Slub perfor-

mances the code is displayed, and the two strands are intertwined. How important is this?

AdrianWard (AW): It’s important to display our screens. But I’m not convinced
projections are the best way to do this as they come with quite a bit of baggage –

3http://www.generative.net/generator/
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(a) Tidal (§4.5)

(b) Texture (§5.6)

Figure 6.6: Slub at the Maison Rouge, Paris, 2011. Dave Griffiths and his SemeBris (McLean et al.,
2010) interface are on house le, Adrian Ward and his Pure Events soware are shown house right. e
present author’s screen is displayed in the centre, using soware named in the above captions.

they’re too passive, they reinforce the author/audience hierarchy, they’re boring.
However, technical and practical means make anything else unfeasible.

DG: For me the projection is more important than the sound. e passivity is
a problem, my favourite gigs are when people come up and me what I’m doing. I
like the breakdown of the hierarchy very much, and make a point to explain and
talk to them.

e role that projections play in live coding is problematic (§6.8.1), reflected here in Ward’s

unease, indicating that it is important to show screens, but that in doing so deep issues are

unearthed. In stark contrast Griffiths, who has a background in fine art and computer games

research, sees the projection of code as more important than the sound. is is a surprising

statement, but when asked to expand upon his point, Griffiths showed fundamental agreement

with Ward; what is of prime importance is not the projection itself, but that performances

should centre around activity.
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DG: I would like to try being in the middle of the audience and projecting
on the floor around us. Or maybe in small performances, make use of more of a
physical material – electronics, tangible computing or some use of computer vision
could be a way to remove the role of the screen, and projection. I think workshop-
performances are something to follow up (thinking of your Textual workshop at
Access Space, Alex) if you have 20 or so people joining in the projection is not
important any more.

In more usual situations, perhaps we think about what the absolute minimum
we need to project would be - perhaps just the characters as we press the keys,
or the expression the interpreter is currently executing. I have a feeling if we
distill it down it could end up being more meaningful to an audience than seeing
everything, all the time.

Slub ensure they perform side-by-side, allowing inter-performer communication which

they deem important:

AW: Yes. And [we] use gestures, too - pointing, laughing, dancing etc.
DG: Agreed - I’m not sure what we talk about, it can be quite minimal like

“shall we stop soon” or “why am I the only one making sound?” but I like it a lot
and I think it’s really important to be able to do that.

In live coding culture, “from-scratch” coding is held as an ideal, however Slub describe a

more relaxed approach, with improvisation taking a starting point from pre-prepared or prac-

ticed elements:

AW: My preparation usually takes the form of preparing sound samples, and
re-learning what I’ve forgoen (awkward JavaScript syntax, mostly). e actual
performance is a lot of improvisation but I’m not strict enough with myself to deny
using previously wrien code, which I know is a bad habit.

DG: I generally will have a couple of different starting points rehearsed, a set of
possible things I will build and a familiarity with the interface built up before a gig.
I think rehearsal in livecoding is really aboutmaking sure you can create a situation
where you have lots of branching points for improvising from. It’s important to
be comfortable enough that your code will provide some predictable results when
you need them, but flexible enough that you can dive into the unknown and see
what happens.

is fits with the well established view of improvisation as being an exploration of pre-

established musical schemata, which are not necessarily changed or deviated from during a

performance (Pressing, 1987).

6.11 Discussion

Live coders such as Slub are shiing the discourse around the use of computers in music per-

formance, for example taking the leading researcher in electronic music Simon Emmerson by
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surprise:

e most unexpected interface for live sound control to have reemerged in re-
cent years is the lexical; reading and writing. e increasing dominance of graphic
interfaces for music soware obscured the continuing presence of the command-
line tradition, the code writer, the hacker. (Emmerson, 2007b, p. 115)

In an on-line research statement “Live electronics and the acousmatic tradition” (2001),

Andrew Deakin reacted to a comment made by Emmerson during a radio discussion:

Emmerson suggested that now we have affordable and ‘realtime’ computer-
based systems there is really only one remaining area needing development – in-
terface and/or instrument design. I could not agree more, a 400 year-old keyboard
layout is surely not the answer.

What was missing from this discussion is recognition of the importance of language, which

the computer allows us specialised access to. We must not allow the directness of embodied

interfaces to mask the importance that the development of language, including computer lan-

guage, has to the development of humanity. By nature, human culture continually re-creates

itself, and as computers play an increasing role in society, including in music culture, program-

mers have found themselves in an increasingly privileged position. Douglas Rushkoff puts this

well:

Digital technology is programmed. is makes it biased toward those with the
capacity towrite the code. In a digital age, wemust learn how tomake the soware,
or risk becoming the soware. It is not too difficult or too late to learn the code
behind the things we use – or at least to understand that there is code behind their
interfaces. Otherwise, we are at the mercy of those who do the programming, the
people paying them, or even the technology itself. (Rushkoff, 2010, p. 128)

But even in 2011, the importance of programming languages are still not felt in music in-

teraction research. While delivering a paper on live coding at the New Interfaces for Musical

Expression conference (Aaron et al., 2011), Sam Aaron expressed shock that the word language

was not amongst the top 200 conference paper keywords.4 We are still developing program-

ming as a creative process, there is still more to be done, and much more to be gained.

4A video recording of Sam Aaron’s presentation is available at http://vimeo.com/26905683/.
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Future directions

e present research has been speculative and integrated with ongoing practice, and so as

endings are beginnings, conclusions also serve as introductions. In the following we take stock

of the present cycle of research, consider its impacts, and where the following cycle may take

us next.

7.1 e Freedom of Interpretation

Where computation is at times hidden and forgoen in computer art, we forget some of its

radical nature. rough programming, artists are able to create pure, linguistic abstractions,

then ground them in human senses through actuators in striking ways. We have seen how a

programming language interpreter can fit into a human creative process, performing the lin-

guistic structures we give it, to generate output to evoke human perception. It seems however

that the freedom to interpret programs is under threat, where consumer computers designed

for entertainment are taking the place of general purpose machines. Just as underlying com-

puter languages are oen hidden in digitally-realised arts, they are being made increasingly

inaccessible in end-user computing in general.

Without interpreters, we would not have soware, but yet interpreters are also soware.

is is why we talk about bootstrapping, where soware pulls itself from the floor by its boot-

straps, a paradox seled by the existence of hardware microcode. is is also why Naur (1992a)

prefers the word ‘Dataology’ to the phrase ‘Computer Science’; programs are data, which op-

erate over data.

Any piece of soware exists as a combination of two parts, some instructions in a com-

puter language and an interpreter of that language. Alone they do nothing, put them together

and they can notionally do anything. Oen there are intermediary steps, commonly compi-

lation into bytecode, but these are just translations into another language, which still require
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interpreting as a sequence of instructions for the magic to happen.

Interpreters allow us to try out ideas beyond our imaginations, adding some instructions,

interpreting them to get output rendered as sound or light to our senses, perceiving otherwise

impossible worlds, and returning to the source code to twist the encoded structures into new

contortions inspired by the results so far. We expand the realms of perception through compu-

tation, not creating things but writing about ideas in order to try to invoke them. We are only

scratching the surface of what is possible, artistic and otherwise, from marrying high speed

computation with embodied human experience.

It is of concern then that the freedom of thought given by interpreters happens to threaten

business models of large companies, who are accordingly searching for the power to make free

access to them illegal on the computers they produce. Games consoles are computers where

the end user is not allowed access to an interpreter, unless they pay for an oen prohibitively

expensive license. You are not otherwise allowed to modify code, certainly not allowed to mod-

ify the interpreter, and so must be satisfied with using whatever programs the manufacturer

allows you to.

Furthermore these business models are spreading, from computer games, to handheld com-

puters and now to tablet computers. iOS, the operating system for the iPhone and iPad, was

a particular shock as a device coming from Apple Computer, Inc., a company producing hard-

ware traditionally marketed at the creative. However to develop and distribute soware for

these platforms you must pay an annual license. e iOS terms have now relaxed to the point

that Apple have allowed the distribution of Codea (http://twolivesleft.com/Codea/), a

tablet based programming environment for the Lua language. is is a welcome development,

but still only exists within the terms of Apple’s business model, and so the ability to share pro-

grams with others requires the purchase of Codea, and cumbersome transfer of source code

listings.

is issue is related to the notion of generativity introduced by Zirain (2009) to describe

components of computer systems which are fundamentally incomplete.1 Zirain gives the

operating system as one example, as a system which need not be tied to particular underly-

ing systems (i.e. the hardware layer) or constrain systems running on it (i.e. the application

layer). In other words, generative systems are designed to be used in ways which the original

designers do not necessarily anticipate. Zirain (2009) sees generativity as under threat due

to security issues which generative systems are prone to, but the threat also comes from aes-

thetic and moral control; for example Apple have blocked soware from distribution on the

basis of aesthetic appearance, depiction of sexuality and for political commentary in the form

1is use of the word generative is distinct from the use in generative art (§1.1.2).
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of ridicule of public figures. As Lessig (2006) argues, those in control of code effectively set the

rules for everyone else. It is no surprise then to see that in following their vision for a hardware

platform, vendors seek to limit and control the ability to program it.

Interpretation is of central concern in creative use of computers, and so the creep towards

centralised, corporate control over interpretation is deeply worrying. e home computer

revolution in the 1980s brought BBC Microcomputers and Sinclair Spectrums into schools and

the home, which encouraged programming from the moment they were switched on. Using

these computers empowered children to create with language under their own terms (Turkle,

2005). It would be a great shame if this exposure to programming was lost. One way to protect

the freedom of interpretation may simply be through the development of novel approaches to

programming language design. If newways of programming engage end-users, then consumer

pressure may be enough to preserve their freedom to program. is can already be seen in the

development of Codea, which is hopefully just the beginning of a soware genre, engaging end

users in programming in and of these new platforms.

7.2 Soware engineering standards

As soware takes an ever increasing role in structuring life in the developing world, consider-

able work has been put into the processes of soware engineering. Methodologies of soware

design promote methods to streamline the specification, planning, development, testing, and

deployment of soware. However like the design of programming notations (§5.1), standard

development practices (such as the application of ISO 9000 to soware engineering) are de-

signed within particular constraints of commercial development which may not necessarily

apply to more experimental or creative situations. Bricolage programming (§6.3.1) is a case in

point, where specifications are defined by the act of programming, rather than vice-versa. As

the programmer is engaged in end-user programming, there is no other user to satisfy, and

formal discussions with audience members are hardly practical. e design goals are therefore

internal and highly changeable.

Practices such as pair programming and test-driven development are intended to make

development both reliable and responsive to requirements, and are collectively known as agile

programming. However built-in assumptions of reaction to external requirements, rather than

an individual’s exploration and experimentation, mean they are inappropriate for the processes

of artist-programmers, who may quite rightly resist formalisation of their personal creative

processes, which may carry important aspects of their artistic style.

Bricolage programming is in stark opposition to the test-driven development movement,
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where a suite of small programs are wrien to test new features and fixes before they are im-

plemented. A program is then judged to be feature complete when all the tests pass. is is

akin to describing a program’s behaviour twice, firstly to outwardly test it and secondly to

inwardly implement it. Rather than developing programmatic definitions of behaviour before

implementation, bricolage programmers make decisions on the basis of behaviourwhile imple-

menting it. ese are different ways of navigating a problem space, test-driven development

is useful for arriving at a pre-arranged target, whereas bricolage programming is useful for

exploring, looking for novel outputs that are valuable in potentially surprising ways.

Another point of diversion is the manner in which programmers collaborate. In industry,

there is strong emphasis on group work in teams, with group overriding individual identity,

particularly where individuals are employed on fixed term contracts. In the arts programmers

may be employed on larger projects under similar terms, as technical, artist assistants. However

the artist-programmer oen works alone, to realise their own individual works. Practices such

as pair programming, where two programmers work together on one computer, are rather alien

to this situation. While artists and musicians do work together on large, free/open source

projects, the development is usually centred around a particular individual. is is even the case

in large projects, such as the development of programming languages for creative work. is

was the case both for Impromptu and SuperCollider, where development followed a paern

where the first years of development is conducted by a single individual. Only when their

vision has been fully scoped out is the codebase opened, and a wider free/open source soware

development community formed.

7.3 Cyclic revision control

We have seen how artist-programmers may have unconventional soware design processes

(§6.3), placing particular demands on their languages and tools. Revision control systems are

among the most important members of a programmer’s toolbox, allowing the history of a pro-

gram to be annotated and managed. Modern revision control systems allow different pro-

grammers to work on their own ‘branches’ of code, which are then merged back into the main

flow at a later date. Where problems arise in development, revision control systems can help

developers understand the source of the problem, by providing historical reference. ese sys-

tems already have much to offer artist-programmers, but could revision control be rethought

to beer meet their particular needs?

Consider a live coder, writing soware to generate a music performance. In terms of re-

vision control they are in an unusual situation. Normally we think of programmers making

147



C 7: F 

revisions towards a final result or milestone, at which point they ‘ship’, packaging and releas-

ing their code for others to use. For live coders, every revision they make is part of the final

result. In this case nothing gets shipped, as they are already the end users. Wemight somewhat

crassly think of live coding in terms of shipping a product to an audience, but really what is

being shipped is not soware, but a soware development process, as musical development.

Also unusual in live coding revisions is that whereas conventional soware development

may begin with nothing, and finish with a complete, complex structure, a live coder both begins

and ends with nothing. Rather than aim for a linear path towards a predefined goal, musicians

instead are concerned with how to return back to nothing in a satisfying arc. A live coder may

begin their performance with a blank editor, and be faced with an immediate decision about

what to build, and how. As they improvise by encoding and modifying musical ideas, they

eventually progress towards a conclusion. eir final challenge is how to end; some increase

complexity to a crescendo and finish abruptly, and others decrease complexity to the minimum,

before final reduction back to an empty editor and silence.

ere are two ways of thinking about time, either as a linear progression, or as a recurrent

cycle or oscillation, as shown in Figure 7.1. ese approaches are not mutually exclusive, they

rather provide differentways of looking at the same temporal processes. Conventional soware

design processes are characterised in terms of cycles of development, with repeating paerns

between milestones. Nonetheless, it is not conventional to think of the code itself ending up

back where it started, while during music performance, we oen do return to prior states.

We are all familiar with chorus and verse structure for example, and performances necessarily

begin and end at silence.

It may be that if we reconsider code development in terms of time cycles rather than linear

progression, then we could find new ways of supporting soware development of music and

other time based arts. Without further speculative research it is difficult to visualise what the

outcome of this might be, but there is already some active, radical work in the representation

of development time. For example revision control is a central part of the Field language en-

vironment (http://openendedgroup.com/field/), and allows the programmer to ‘scrub’

the development timeline. It seems however that in such experimental systems, the revision

control timeline has so far been treated as a linear structure, with occasional parts branching

and re-meeting the main flow later on. It is not unheard of for timelines to feed back on them-

selves in conventional soware development, a process called baporting, but this is generally

avoided, only done in urgent circumstances such as in applying security fixes to old soware

versions.

What if instead of being linear, soware development timelines were of cycles within cy-
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Figure 7.1: Below figure and caption reproduced from Buzsaki (2006, pg .7) with permission
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Pantha reiCircle of life

Oscillations illustrate the orthogonal relationship between frequency and time
and space and time. An event can repeat over and over, giving the impression of
no change (e.g., circle of life). Alternatively, the event evolves over time (pantha
rei). e forward order of succession is a main argument for causality. One period
(right) corresponds to the perimeter of the circle (le).

cles, with revision control designed not to aid progression towards future features, but help

the programmer wrestle their code back towards the state it was in ten minutes ago, and ten

minutes before that? We leave this as a question for future research, but suggest the result

could be a system that beer supports thematic development in music and video animation.

7.4 Conclusion

“My view is that today’s computer world is based on techie misunderstandings
of human thought and human life, and the imposition of inappropriate structures
… on things we want to do in the human world.” Ted Nelson (2008; http://
youtu.be/zumdnI4EG14)

Day to day, it does not particularly maer that we do not know the mechanisms behind

our own actions, we can simply learn through doing. e need for theory is sometimes derided

in music culture, the long-lived phrase “writing about music is like singing about economics”

traced back nearly 100 years (H. K. M., 1918), more recently taking the form of comparison with

dancing about architecture. e sentiment is that music is about activity, and not theorising.

eorising is difficult for artist-programmers to avoid however, including those making

music. In order to write a generative music program, an artist-programmer must necessarily

theorise and encode musical structure in language. Indeed writing computer programs to make

music is a form of writing about music: it requires the introspection, abstraction and formal-

isation that many have derided by comparison with architectural dance. Not only is writing
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about the processes of art necessary, but in the process, coming to greater understanding of

ourselves allows us to reach beyond what would otherwise be possible.

With introspection as our motivation, we have tried to characterise the inner processes of

artist-programmers, in terms of intertwined analogue and digital representations. is leaves

many questions unanswered and indeed unposed, but promotes a balanced view of the artist-

programmer engaged closely both with their target medium, and the meta-medium of the

source code. We propose that this creative approach should be embraced with the full range

of human faculties available.

e ideas of the artist-programmer are wrapped in both analogue and digital packages, and

as they are unwrapped, the programs that spring forth from fingers at keyboard have a trace

of analogue relations in conceptual space, as well as high level, structural reflections cast from

the language of the mind. Source code may be organised into discrete trees, but those trees

sway in an analogue breeze from the activity of perception. We hope the artworks, languages

and notations introduced through this thesis demonstrate the fertile ground available to the

artist-programmer, and inspire greater works to follow.
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A A

Live coding survey

e following contains freeform answers given in response to the survey discussed in §6.9.

A.1 Definitions of live coding

e following are the twenty nine answers to the question “How would you define live coding,

in one sentence?”, presented here unedited.

• Live coding is instrument building, composing and performing in one performative act.

• Exposing, for an audience, the thought processes behind making music algorithmically.

• Coding as a performance art. (I’m not very good at it yet)

• a way to entertain, the geeks and the noobs.

• An audio visual performance practice where computer soware that generates the audi

visuals is wrien as part of the performance.

• A live performance practice which uses computer programming languages and environ-

ments as an interface for the interactive manipulation of media rich soware runtime

systems.

• Live coding is performing awork bywriting andmodifying computer programming code

which is responsible for creating the resultant work.

• Live coding is a performance practice of constructing and interacting with algorithmic

processes to create art.

• An exchange of knowledge and experience between two or more performers/coders.

• Creating logic, structure and meaning as part of a performance instead of beforehand.
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• maing real-time changes to sound generation

• coding stuff .. live

• listening to changes

• Build from scratch, make it trandparent.

• live coding is improvisation on the ”instrument computer”

• I’m a bit hard core, and prefer live coding to be on the fly, and from scratch - none of this

executing pre-built patches / code. I also have a tendency to think it should be ’code’ and

not graphic apps such as MAX/ PD.

• Programming as creative journey or ritual.

• electronic improvising freedom

• Coding music/animation with direct sounding/viewable results.

• I oen define it as an improvisional way of doing music with computers, thus being to

electronic music what free jazz is to jazz. It’s also a way of considering the computer as

an instrument. (sorry two sentences)

• e use of instructions and/or rules for the control of computer(s) (or person(s)) as a

method of creative expression.

• several iterations of coding/executing within the span of a song/piece

• a more natural interface to the creative process to those of us that think more like com-

puters than bipedal meatbags

• performace as in performance art

• building your instrument while playing it

• the art of creating music from a procedure yet to be started

• Reformalising an active formal system.

• Creating and sharing algorithms live.

• An improvised performance of music or animation by using interactive programming to

describe and control process.
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A.2 Comparing live coding

e following are the twenty eight freeform, unedited responses to the question “What is the

difference between live coding a piece of music and composing it in the sequencer (live coding

an animation and drawing one)? In other words, how does live coding affect the way you

produce your work, and how does it affect the end result?”

• It is very much live. Temporality comes strongly in. e sequenced piece has its own

formal structure defined in the sequencer. e formal structure of the live coded piece

is defined by the complexity of the language. Live coding pieces can therefore be boring

to listen to. : ) But they can be fun to watch being programmed. erefore, I find

livecoding more interesting as a performative practice than a musical practice (if this

distinction makes any sense).

• (is question might be too open to answer in a meaningful way.) Live coding is per-

forming, composing is not.

• To date, my live coding has only been a process of assembling code alreadywrien, when

to turn this on or off, tweak gain/pan, etc.

• it is more about the experience of the audience than about my own concepts. yes, some-

times you try to integrate them, but if it doesn’t appeal it won’t help you in the contest.

while making fixed media music, one can choose for a certain amount of extremity, al-

though one might not sell a lot of cd’s than, but hey, that’s up to you.

• Live coding is a meta compositional process that emphasises paerns and how they play

out, while sequencing is oen capturing of performed gestures or sound.

• Live coding is about abstractions. is is really the only difference between me live cod-

ing andme using a sequencer. Amore interesting question is maybewhat’s the difference

between using impromptu and using a guitar. en it becomes about the symbolic vs the

gestural as well as the many vs the few (concurrent activities that is).

• Live coding forces a work to be performed, and possibly (ideally?) improvised. I find this

a very different prospect to ’composing’ music in a sequencer (or even writing notation

on paper) for a later performance. However, while Live Coding is a performance prac-

tice, it also offers the tantalising prospect of manipulating musical structure at a similar

abstract level as ’deferred time’ composition. To do this effectively in performance is
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I think an entirely different skill to the standard ’one-acoustic-event-per-action’ physi-

cal instrumental performance, but also quite different to compositional methods which

typically allow for rework.

• Live coding encourages creative thinking at a more abstract level, for example, the

parametrisation of large scale formal structures. Sequencing can provide a composer

with a highly detailed representation of the music, which can be useful when trying to

realise a very concrete idea. However, I would argue that sequencing is, on the whole,

a more passive medium, in that it generally contributes less to the creative process than

a live coding environment. Perhaps a reason for this is that sequencing aims to provide

an analogical representation of music, where as there is much more scope for the repre-

sentation of musical ideas in live coding. Serendipity is also more likely to figure in live

coding, where subtle random processes or plain bugs might result in interesting unin-

tended ideas. Plus the live aspect imposes its own set of constraints that are not present

in off-line composition, as well as opens up possibilities for real-time collaboration.

• Live coding connects me with the music or sound the same way playing guitar does; it

givesme a feeling of control andmakesmemore conscious of the now. My first concern is

to produce a sound, much the same way as a jazz improviser’s first concern is a melody.

Structure is something to start working on once you have suitable sounds (or scales,

melodies, harmonies, rhythms, whatever). Note: I am a beginning livecoder, so my view

on livecoding could very well change over the years.

• Sequenced music isn’t performed, it’s just playback. Following this logic, and assuming

I want to improvise in a performance, there’s no way to properly perform using a com-

puter if I had to sequence everything. e other part of me thinks that writing code is

the same as sequencing, it’s just a shorthand. To answer your question, this all hinges on

the need to be improvising at a performance. If this wasn’t necessary, and it was merely

about a playback, then there would be no need for livecoding.

• I’ve only played around with this at home, but Live coding has far less perfection and

the product is more ore immediate. It allows for improvisation and spontaneity and

discourages over-thinking.

• As someone who isnt very apt in the manual world of realtime composition with phys-

ical, traditional instruments I probably struggle with both approaches. Live coding is

just another instrument to me, just one which has a more significant setup time and lin-

guistic interface. When I do use sequencers I frequently use a lot of embedded algo type
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processes and code external apps (pd etc) to process alongside. Is the distinction more

apparent when its live to a live audience? as that implies a deadline, expectations etc. If

you compose music at home on your own gear, including a day long workout with se-

quencers and soware (generally with liel pause in the actual loop) is that livecoding?

semantics schemantix…..

• there is only a recording le, but i can’t repeat the coding.

• Coding live: intuitive decisions with no pre-built sequences. Freedom, danger and punk.

• generally i find composing in sequencers very boring as a process (so i hardly do it nowa-

days), whereas live coding (LC) adds more excitement to the process (”will it actually

work at all?”). whenever i do sequence-like structures in LC, they are usually generated

(using e.g. randomness (with constraints to fit them into the musical context)), so they

are not totally predictable. sequences will eventually be re-generated. however, i oen

don’t use sequences at all, but rather try generate all the non-live structures algorithmi-

cally.

• Well, the live-coding soware provides greater scope for sound manipulation than other

audio editing soware (eg pro tools etc), but doing it on the fly (live coding) vs writing

code in my own time is more of a psychological hurdle - It’s harder to be satisfied with

the outcome with live coding. When I work on writing a piece, in my own time (and

taking a long time) I can perfect each sound to be precisely as I intend it to be, whereas

doing it on the fly , i.e. live coding I have to be more generalised as to my intentions.

• Essentially the main difference is the ability to improvise. e live aspect becomes more

important than the end result. Collaboration becomes easier, and more natural - as it’s

easier to adapt the work to different people and new situations.

• I use live coding to develop ideas and test them then I would use them in composed

pieces, but the process and imprvising is almost more interesting as the end result.

• Mostly the fact that while livecoding I always found sounds that I could never had found

otherwise. us, when I find a sound that seems interesting to me, I try to tweek every

parameter to see how beer it could be. I am used to keep track of every session I am

doing, but I oen feel a bit disappointed by the static feeling of the last sound I get.

But most importantly, even if sometimes I make sessions that is totally crap, I always

learn something new. And as I come back to livecoding, all the knowledge I got from all

sessions is here readily available to use in my head. Another advantage is the fact that
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even if you use rather the same structures every now and then, it always sounds different.

On a mental process way of thinking, livecoding gives the opportunity to always foster

new ideas while not coding. It’s a real creative way of making music.

• Live Coding is riskier, and one has to live with unfiing decissions. You can’t just go one

step back unless you do it with a nice pirouee. erefore the end result is not as clean

as an ”offline-composition”, but it can lead you to places you usally never would have

ended.

• I’m not sure they need be different at all, as a basic sequencer is fairly easy to implement.

Mostly I use larger gestures to place a whole series of notes at once, this is faster than

clicking them all in and leads oen leads to unexpected results. In homebrew soware

we can have a tighter link between the paern generation and the signal generation

processes but in livecoding creating this link may become a form of expression itself,

which is of course quite exciting. Perhaps most importantly the higher pace of livecoding

leads to more impulsive choices which keeps things more interesting to create. Not sure

how oen that also creates a more interesting end result but at least sometimes it does.

e shorter setup time before we can get started with making music (less gear to turn

on, no patch cables) makes it more suitable for impulsive playing as well.

• i don’t think of it as different to a sequencer, it’s just a different user interface. i think in

the same way using both. i just oen find the programmatic interface to fit my thought

processes beer.

• You don’t have the opportunity to do re-takes

• the whole process becomes more improvisational. like sketching. never finished compo-

sitions (on a timeline / with a fixed form). for me it’s more about having fun coding than

the end result anyway.

• Live coding forces me to experiment and move faster within the compositional/ impro-

visational process. Personally I consider live coding to be the improvisation of the com-

puter music world.

• I’ve never really done much with sequencers, so I don’t know the difference. I like the

fact that live coding is more sculptural and passive.

• Live coding exposes the beauty of programming languages (or programmatic practices)

and the invention of interface live. ough you could do live coding with an established

tool, I believe part of the interest is seeing the building of tools, even if they are meta
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tools. I have all but abandonned live coding as a regular performance practice, but I use

the skills and confidence acquired to modify my soware live if I get a new idea while

on stage.

• You have different kind of canvas, and it favors results within your technique.
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