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ABSTRACT 
Large quantities of scanned music are now available in public 

digital music libraries. However, the information in such sources 

is represented as pixel data in images rather than symbolic 

information about the notes of a piece of music, and therefore it is 

opaque to musically meaningful computational processes (e.g., to 

search for a particular melodic pattern). Optical Music 

Recognition (Optical Character Recognition for music) holds out 

the prospect of a solution to this issue and allowing access to very 

large quantities of musical information in digital libraries. Despite 

the efforts made by the different commercial OMR developers to 

improve the accuracy of their systems, mistakes in the output are 

currently too frequent to make OMR a practical tool for bulk 

processing.  

One possibility for improving the accuracy of OMR is to use 

multiple recognisers and combine the results to achieve an output 

better than each of them individually. The general process 

presented here can be divided into three subtasks, S1, S2, and S3.  

S1 is focused in the correction of rhythmical errors at bar level, 

counting the errors of the different OMR outputs, establish a 

ranking of the results, and make a pairwise alignment to select the 

best measures. S2 is based on the alignment and voting of 

individual symbols. For this task we have implemented a 

conversion of the most important symbols to a simple grammar. 

Finally, S3 improves the output of S2 by comparing and adding 

symbols from S1 and detecting gaps through the alignment of 

wrong measures. 

The process described in this paper is part of our “Big Data 

Approach” where a large amount of data is available in music 

score libraries, such as the International Music Score Library 

Project (IMSLP), for the purpose of Music Information Retrieval 

(MIR). 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: performance 

evaluation (efficiency and effectiveness); I.7.5 [Document and 

Text Processing]: Document Capture—document analysis, 

graphics recognition and interpretation; J.5 [Arts and 

Humanities]: performing arts (music) 
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1. INTRODUCTION 
Most current services and repositories which might qualify as 

Digital Music Libraries offer access to different digital 

representation of digital contents. Some focus on audio, for 

example, iTunes, Spotify and, in the classical domain, the Naxos 

Music Library. Some provide access to digitised/scanned image of 

scores, most notably the Petrucci Music Library (also known as 

the International Music Score Library Project, IMSLP1), and 

several public and academic music libraries, including the Sibley 

Music Library at Eastman School of Music, and University of 

Rochester.2 Some services give access to metadata, such as the 

details of recordings and tracks available at MusicBrainz,3 or the 

results of acoustic analysis at The Echo Nest.4 The crucial 

information for musicologists, however, is often none of these 

three kinds, but the symbolic information of the scores such as the 

notes in the scores. A musicologist can read the symbolic 

information from the image of a score, or hear it from the audio 

recording, but if computational tools are to be used to search for 

or analyse music at this level of information, this kind of current 

digital music library is of little use. 

There are collections which give access score symbolic 

information, such as MuseData, hosted at CCARH, Stanford 

University,5 but they are small in number and limited in scope. 

None has shown the significant impact of community compilation 

which has made IMSLP so successful. The reason is probably 

because creating a digital file with such symbolic musical 

information manually is time consuming, requires specialist 

software and expertise, and generates significant new intellectual 

property. 

The same issues apply in the domain of text, where collections 

may contain images of pages, recordings or speech, or metadata 

such as bibliographic details. In the case of collections of page 

                                                                 

1 www.imslp.org 

2 urresearch.rochester.edu/ 

viewInstitutionalCollection.action?collectionId=25 

3 musicbrainz.org 

4 the.echonest.com 

5 www.musedata.org 



images, though, Optical Character Recognition (OCR) technology 

is commonly applied to create searchable collections, and 

sometimes to generate symbolic files, e.g. Project Gutenberg.6 

Equivalent software for music, commonly called Optical Music 

Recognition (OMR) software, does exist, but its error-rate is 

typically too high for it to generate similar impact for digital 

music libraries, as OCR for the domain of text. (For an example of 

the potential impact of OMR, and an illustration of the limitations 

of current OMR software, see the Peachnote service for searching 

IMSLP.7 [15]) 

The objective of our project, as introduced in [14], is to improve 

the quality of OMR by making use of multiple sources of 

information. We hope to do this by post-processing the results of 

multiple OMR software, and by adapting OMR software to make 

use of multiple inputs. In this paper, we describe our post-

processing method, and report some preliminary results. It is 

unrealistic for us to hope that the project will improve OMR 

accuracy sufficiently to generate error-free large scale symbolic 

collections in digital music libraries, but we hope to make a 

contribution in this direction. At the very least, we hope to 

produce accuracy measures with realistic use-cases so that 

musicologists and collection curators can make informed 

decisions about the use of OMR.8 

1.1 Previous OMR Research 
OMR has been a topic of research for several decades. A recent 

survey and discussion of the problem can be found in [11]. 

Discussions on some of the challenges, mainly due to the 

complexity of scores in comparison with text and the combination 

between vertical and horizontal structures involved, can be found 

in Ng [10], Bellini [1], and Jones et al. [8] As noted above, the 

accuracy of OMR is limited, and even with a simple page as input, 

OMR software can produce errors. Those errors are difficult to 

predict and different in each case, even for the same page scanned 

at different resolutions.  

Various post-processing approaches to improve the results have 

been proposed. Byrd & Schindele [2] suggest using rules for each 

OMR describing their strengths and weaknesses at different points 

such as grace notes, missing clefs, slurs, trills, and even 

establishing a ranking for a specific version of OMR. They 

propose a corpus of 17 rules, but recognise that 50 or even 100 

rules would be a more reasonable number. A problematic aspect 

of this research is the moving target of new versions and the 

inaccuracy of old rules with respect to the new systems. 

On the other hand, Bugge et al. [3] create a pipeline for 

converting the MusicXML output of each OMR to a new format, 

MusicXiMpLe (a subset of MusicXML keeping only the rhythm 

and pitch), and then converting them into symbolic sequences in a 

specific grammar for aligning and voting. They use the 

Needleman-Wunsch algorithm [11] extended to multiple 

sequences, and they report experiments with two different 

corpuses of music. One drawback of this system is that some 

information is lost in the format conversion pipeline. Proposed 

                                                                 

6 www.gutenberg.org 

7 www.peachnote.com 

8 Software for automatic transcription from audio data rather than 

from images of pages exists for both text and music, and while 

both suffer from low accuracy, research in music transcription 

again lags behind the equivalent in text. 

improvements include taking into account more parameters of the 

score, and to increase the grammar involved. 

Obtaining information in the same score from different measures 

and parts was suggested by Church & Cuthbert [4]. The approach 

uses rhythmic repetition within a score to create a model where 

measure-level metrical errors can be fixed. They flag the incorrect 

measures and replace the errors with the most rhythmically 

similar material from another correct measure. It focuses on 

resolving one type of error at a time. For correcting pitch errors, 

another algorithm would be necessary. This system can be 

extended to multiple recognisers. 

Ideas about the necessity of different approaches (top-down and 

bottom-up) in OMR are discussed in Jin et al. [7]. Rossant & 

Bloch [12] suggest a group of musical rules in fuzzy logic in order 

to obtain more consistent and reliable results. 

2. GENERAL STRUCTURE 
In this paper, we present one structure that combines the bottom-

up and top-down classical approaches for solving problems. The 

general structure is divided into three subtasks (S1, S2 and S3), 

for clarity. S1 is top-down oriented, articulating and improving 

the output based on rules that identify the metrical correctness of 

the measure. The process or flagging wrong measures is not a 

straightforward decision due to elements such as anacrusis, 

repetition symbols in the middle of a measure or possible 

incomplete last measure in a movement. Besides, mistakes 

recognising time signatures in the middle of a score lead to an 

important number of “false positives” being flagged. 

 

 

Figure 1. General flow structure. 

 

S2 is a bottom-up strategy based on the idea of Bugge et al. [3] 

aligning and voting each symbol, without converting the 

musicXML output to different formats, and improving the process 

in some aspects like ties and tuplets. The main drawback of this 

approach is the impossibility of detecting incorrect decisions in 

the voting system (i.e., when two OMRs make the same error), 

and these errors will be propagated. 

Most of the symbols voted in S2 tend to be correct, but important 

information is missing if the recognition rate is poor in some of 

the OMR. In the last step, S3, both strategies are combined 

completing the S2 measures with information from S1. 

3. FLAGGING AND CORRECTING 

MEASURES. TOP-DOWN (S1) 
Byrd & Schindele [2] comment on the problem of evaluating 

different OMR software and the relative importance of different 

kinds of error. At this point, our first approach is based on finding 

errors by checking for metrically incorrect measures. The most 

common errors are, for example, mistakes with dots, quavers 

recognised as semiquavers, missing notes, etc., and these errors 



can be detected in most of the OMR recognisers as “measure 

errors”. In the particular case of PhotoScore, these errors are 

concealed in the MusicXML output through the adjustment of 

each measure with extra rests or removal and cropping of notes. 

(See Figure 2) For this particular OMR software, more 

information will be needed in order to detect and to flag the 

possible incorrect measures in the MusicXML output. 

 

Figure 2. Example of PhotoScore recognition with rhythmical 

mistakes. The MusicXML output adjusts and corrects the 

measure cropping the last note.  

 

In this research, we are testing four commercial OMR systems: 

Capella-Scan 8.0, PhotoScore Ultimate 7, SmartScore X2 Pro, 

SharpEye 2.68. In every case, our system processes the output of 

each of the above mentioned OMR system in MusicXML  

 

Figure 3. First part diagram for obtaining S1. 

 

Once the number of incorrect measures is flagged in each OMR, a 

ranking is established. The best two OMRs are aligned and 

compared in order to obtain a new output (in MusicXML). If 

errors remain, the system continues comparing the output with the 

next OMR until there are no more errors, or the last OMR output 

has been compared (as illustrate in Figure 3). 

3.1 Alignment of Measures 
For each pair of OMR, it is necessary to align the measures in 

order to make proper comparisons. Many algorithms and tools for 

this general task have been developed, especially in association 

with biological sequences.9 For this pairwise alignment, we use 

the classic Needleman-Wunsch algorithm, but any other 

algorithms, suitable to rhythmic sequences, can be used. For our 

first prototype, the sequences of each measure are converted to a 

hash of durations for simplicity in the pairwise-alignment and the 

pitches are removed (Figure 4). The hash sequence gives us 

rhythmic information, but it would be necessary to add pitch 

information for more general cases.10 At the moment, we are 

testing with Mozart’s music, where the rhythmical patters are 

sufficiently varied to govern good results. 

 

 

['Q', 'd', '`P', 'PQZ', 'VFFFFF', '`P'] 

Figure 4. Sequence of measures converted to hash array. 

 

The Needleman-Wunsch algorithm is defined as 

        |

               [ ]     [ ] 

        

        

 (1) 

 

M is the similarity matrix of the measures, i, j are the measure 

numbers and g is the gap penalty, in this case g = -1 

 

-1 < α < +1    (2) 

 

where α is a measure of similarity between bars and is calculated 

in this case using the Needleman-Wunsch algorithm. Figure 5 

shows an example of alignment with two OMR outputs to 

determine the value of α.  

 

 

Figure 5. Example alignment of sequences at bar level. 

 

                                                                 

9 Clustal is a widely used multiple sequences alignment program 

for biological research, http://www.clustal.org/. Another 

program is mafft (http://mafft.cbrc.jp/alignment/software/) that 

allows working with any multiple sequences. 

10 This alignment through rhythmic hash sequences would not be 

appropriate for rhythmically even music, for example, a long 

sequence of semiquavers such as in the Prelude of Bach’s suite 

nº1 for solo Cello. 

http://www.clustal.org/
http://mafft.cbrc.jp/alignment/software/


The measure of the similarity α can be obtained from (3) below:  

             (3) 

 

where l is the length of the shorter sequence. In this example, the 

result is α = 0.5. If α < -1 we set the value to -1, in which case, we 

understand that both sequences are completely different. This 

simple algorithm provides acceptable results in the alignment of 

rhythmic hash sequences. Other algorithms based on distance will 

be tested in the future. 

 

 

Figure 6. Example of comparison and alignment two hash 

sequences of different OMR. 

 

After the matrix is filled with the values, the alignment is 

determined by tracing a path from the bottom-right cell back to 

the top-left, selecting the highest-value neighbouring cell in each 

case. The value of the bottom-right cell provides an idea of 

similarity between the two sequences. With the same equation (3) 

the system obtains a value that indicates the similarity between the 

two OMR outputs. In the example as shown in Figure 6, this is 

           . 

Once the two OMR outputs have been aligned, the next step is to 

take the better measures and to remove extra bars (gap penalties). 

Continuing with our example, it can be observed how the OMR 2 

has introduced an extra measure at bar 3, due to the alignment 

algorithm (see Figure 7). Probably, the OMR 1 has made a 

mistake recognising a crotchet as a bar line. In order not to 

propagate errors, all these extra measures are removed for the next 

comparison. 

The final result is a new MusicXML output that will be compared 

with the next OMR output, if the general measure errors are 

higher than zero, and this is repeated in a recursive process. 

 

 

Figure 7. Example alignment with extra measure in OMR 2 at 

bar 3. 

4. ALIGNING AND VOTING. BOTTOM-UP 

(S2) 
This second building block is based on the idea of removing 

errors based on common symbols. For the alignment of 

sequences, the same Needleman-Wunsch algorithm described 

before is applied, but extending the pairwise alignment.  If 50% or 

more of OMR agree, the symbol is flagged as correct. In the 

particular case of having 4 OMR systems, the decision between 

>50% or >=50% is not trivial and produce completely different 

results.  If three of them have to be in agreement, the recognition 

rate is lower, but more accurate (the symbols included have higher 

probabilities of being correct). If only two have to agree, the 

output produces more symbols, but propagates more errors. 

In order to align and vote symbols easily, we have created a 

simple grammar of the most important elements in the score. 

Expressions and slurs are removed, but ties and tuplets remain 

even though they are not taken into account in the alignment 

process. If the symbol voted has secondary information (ties, 

tuplets or elements of repetition bars), this information is 

maintained. The syntax used is very simple for identifying each 

symbol. The structure is as follows: 

[[symbolType:basicInform.][extra 1][extra 2]…[extra n]] (4) 

where 

                             

 

and basicInform is the basic information of the symbol. In the 

case of notes: 

 [N: pitch_duration] 

 

where the duration is specified in quarter length (crotchet=1, 

quaver=0.5, semiquaver=0.25, …). Dots are included in this 

duration, but triplets are not, Instead, they are included in the 

second position of the array. Extra 1, 2…n provides additional 

information important for each symbol, but not essential in the 

alignment. 

Some examples: 

- Time signature: [TS:3/4]  (3/4 time signature) 

- Key signature: [KS:2]  (2 sharps in the key signature)   

- Notes:  [[N:G5_0.25][0.166][‘start’]] 

(G5 triplet semiquaver with tie) 

- Rests:  [[R:0.25][0.166]] 

(Triplet semiquaver rest) 

- Bars:  [[‘!’][‘repeat’][‘start’]] 

(double bar start repetition) 

For the alignment algorithm, only the first value in the array is 

taken. In the case of notes, the second value indicates the real 

duration (tuplets) and the third ties. The same idea is implemented 

in rests, bars and chords. Once the symbols are aligned, the ones 

with the most votes (50% or more) are included in the output and 

converted back to MusicXML. 

5. COMBINING (S3) 
The S2 strategy (aligning and voting) guarantees that most of the 

symbols included are correct, but many of them can be missing. 

At this point, we are not correcting symbols in S2, and we are 

taking this output as an incomplete truth. With a simple 

“alignment and complete” algorithm between S1 and S2, some of 

them can be recovered. For the alignment of the measures, the 

algorithm presented in 3.1 has been implemented. The alignment 

inside each measure is made by transforming the measures to 

sequences of symbols, as was explained in section 4, and aligning 

them using the Needleman-Wunsch algorithm. In the alignment, 

the gaps produced in the measures of S2 are filled with the 

information of S1. A more advanced algorithm will be 



implemented for detecting missing bars because, in this case, it is 

necessary to determine the point for splitting the measure. 

Figure 6 illustrates the combination of outputs from S1 and S2. 

The red symbols are incorrect, and the green ones are missing. In 

this particular case, the second measure of S1 is completely wrong 

(missing) and the anacrusis is misplaced, but the rest of the notes 

are correctly recognised. Aligning and comparing symbols, the 

sequence of the second measure will be: 

 

S1: [!][N:A4_1.0][N:D5_1.0][N:D5_2.0][!] 

S2: [!][N:A4_1.0][N:D5_1.0][     *        ][!] 

 

Replacing [*] in S2 by the appropriate symbol from S1 

[N:D5_2.0] the mistake is corrected.  

 

S1 

 

S2 

 

S3 

Figure 6. Example of combination S1+S2 to improve the 

output. 

 

5.1 Rules for detecting wrong measures 
A better degree of improvement is achieved by identifying 

correctly as many wrong measures possible, but this is not always 

a trivial task. The detection of incorrect measures was made in the 

first approach using the correctors class of music21, but there are 

many cases where flagging wrong measures based on the simple 

time signature mark of the score produces bad results.  

Some algorithms are proposed here. 

a) Anacrusis and repetition marks 

Anacrusis or repetition marks in the middle of the measure 

are easy to detect and implement if the general time signature 

is correctly recognised. The simple algorithm of adding two 

adjacent measures and checking if the value is equals to a 

complete measure, works appropriately in most of the cases 

 

    

Figure 7. Anacrusis and repetition marks detected as “false 

positive” errors. 

 

b) Finding the appropriate time signature 

There are many cases where the time signature information is 

lost or incorrect. To detect this case, an algorithm based on 

the average measure value is required.  As a first approach, 

the algorithm detects and flags possible transitions based on 

the average number of quavers. If two transitions are too 

close, less than an estimated value, one of them is removed. 

These transitions allow the stream of measures to be divided 

into chunks.  Finally, the system calculates the average 

number of quavers of each chunk and estimates the time 

signature to be compared with each measure. 

 

                    

                                               

 

            , 

               (      )  

                                     

Figure 8.  Algorithm for detecting wrong measures based on 

the context. 

 

c) Implementing stylistic rules 

Another type of rule can be implemented based on the 

musical style. Figure 8 shows an example of a measure with 

a typical sequence of semiquavers in a classical imitative 

progression. In the output of the OMR, one semiquaver is 

wrongly converted to a quaver and the last note is removed. 

Three things point to potential mistake(s) here: the rhythmic 

pattern is very unusual, the beaming does not follow the 

usual rules, and while the sequence of pitches in the second 

half of the measure clearly follows the pattern in the first 

half, the rhythm does not. While this is not flagged as an 

error by the OMR software (because the measure fits the 

expected duration in 4/4) the mistake could be easily 

detected and corrected by reference to a library of possible 

musical stylistic rules. 

 

 

 

Figure 8. Rhythmic error in a 4/4 measure. 

 



d) Extracting the appropriate information 

A more complex situation is when the tuplets are implicit but 

not explicit (Figure 9). If one OMR recognises perfectly all 

the symbols a simple algorithm for detecting wrong measures 

would indicate a “false positive”. Furthermore, things 

become more complex when some OMRs try to guess the 

real rhythm by adjusting the 5 semiquavers, making them a 

quintuplet or introducing a new time signature (Figure 9). A 

future system for detecting implicit rhythms, possibly based 

on the beams and the style, will be implemented. 

 

 

 

Figure 9. Triplets implicit. Photoscore changes the time 

signature from 4/4 to 9/8. 

 

6. TESTING THE SYSTEM 
One of the most difficult, and controversial, parts of research 

about OMR is how to define and measure improvement in a new 

system. Typical mistakes such as extra bars, missing notes or 

extra dots cannot be equally weighted, and even the position of 

the error in the bar should affect the final mark. For this purpose, 

we have developed an application for counting missing and wrong 

symbols equally and identify them in colours (red and green) in 

the XML output file. The system aligns and compares the output 

with the ground truth and determines the percentage of accuracy. 

The testing process can be divided into the following steps: 

a) Creating the MusicXML ground truth  

The first problem is the availability and reliability of sources 

to create a sufficiently large set of ground truth to test the 

system. In many cases, the sources are in musedata format 

[6] with basic symbols (rhythm and pitch without slurs, ties, 

expression markings, etc…), and mistakes can be generated 

in the automatic transcription to MusicXML. In fact, in our 

experience correcting by hand the Mozart string quartets 

K. 387 and K. 421 from the music21 corpus in musedata 

format, the conversion to MusicXML makes some mistakes 

in the rhythm, especially with some dotted half notes. 

Another important point is the existence of different versions 

or editions of a piece. Even assuming that the pitches and 

rhythms are the same,11 rest symbols, dots and ties can be 

slightly different, although equivalent. Extra adjustments will 

be made to prevent “false positives” in the testing process. 

For the initial tests reported here, we have used two editions 

of Mozart’s string quartet Nº 14 in G major, K. 387 and 

Peters edition of K. 421 from IMSLP. The ground truth was 

                                                                 

11 This is not the case for many scores. As an example, the BWV 

853 – Well-Tempered Clavier, Book 1: Prelude and Fugue No. 

8 in E-flat minor can be found in D-sharp minor in many 

editions. 

created by hand using music-notation software to generate 

MusicXML. 

b) Calculating the differences between the ground truth 

and each OMR 

Each OMR is aligned with the ground truth, and the system 

calculates the mistakes producing a number that reflects the 

similarity. As noted above, not all errors in OMR have the 

same importance and a more detailed process will be 

evaluated in the future in order to weight them appropriately.  

The symbols included are notes, chords, rests, barlines, key 

signatures and time signatures. In this first assessment tuplets 

and ties are not evaluated.  

c) Calculating the differences between the ground truth 

and our multiple OMR 

This procedure is similar to step b. The number obtained 

indicates the accuracy and allows automatic comparison with 

other scores and other OMR. From this comparison, the 

relative percentage of improvement is obtained without 

checking or counting errors by hand. This will be essential in 

a later stage of our research in which we aim to test our 

methods on large quantities of data.  

6.1 Results 
We have tested our system with 64 pages of music using the 

Mozart’s string quartet Nº 14 in G major, K.387 and Nº 15 in D 

minor, K. 421. In this first version, we focused on parts rather 

than full scores for ease of checking the errors. The OMR 

programs involved in this case are the four mentioned in Section 

3: Capella, SharpEye, SmartScore and PhotoScore.  

Figures 8 and 9 show the results. The score sources used were 

PDF downloaded from IMSLP and converted to raster images. 

The first column group in Figure 9 shows results of a PDF 

produced by an IMSLP user ‘Gory’ using the Finale typesetting 

software. It is very clear and clean, with a resolution of 150 dpi. 

The other column groups are for scans of the Peters edition from 

c. 1882, at a resolution of 300 dpi. It is also relatively clean but 

the edges of the line symbols are jagged, the layout is more 

compressed, and there are symbols that are not present in the first 

source, such as fingering and bowing.  

In many cases, the resolution of the image can decisively affect 

the accuracy of the recogniser, but there are no clear relations. 

Sometimes higher resolutions are better and sometimes worse. It 

could be possible to find the best recognition rate, for each OMR 

and page, using a trial-and-error system through an algorithm that 

iterates between several resolutions and obtains the best results. 

This iterative system could be another idea to be implemented in 

the future. 

These results evaluate only the S2 output. The average of 

recognition is around 93.4% versus 89.5% for the best OMR. The 

improvement rate is around 4 percent which means that in an 

average page with 500 symbols, 20 have been corrected. The S1-

S3 system is still in the process of further tuning and 

implementation of appropriate rules. Our first estimates indicate 

that an improvement of around 1% or 2% in S1-S3 over S2 can be 

achieved, to correct another 4 to 7 symbols/page, but it is possible 

that we are approaching maximal possible recovery of information 

via this kind of technique. In our tests using scores from the Peters 

edition, the average OMR recognition rate is lower than 88%. 

This excludes results from Capella on the viola parts because the 

clefs signs have not been correctly recognised. 



 

 

Table1. Recognition rate in different OMR and S2 output 

 

 

 

Figure 9. Recognition rate from different OMR and S2 

output. 

 

7. NEXT STEPS 
The system implemented is focused on metrical errors at measure 

level. The source code of this version can be downloaded from 

http://github.com/MultiOMR, but this is only a “work in 

progress”. There are considerable works still to be done in order 

to achieve a sufficiently accurate system with a reliable procedure, 

that can processes a large amount of images available in digital 

musical libraries in batch without manual interventions.  

This project is part of our Big Data approach that explores two 

directions to improving OMR accuracy. The research reported 

here is the first direction, utilising post-processing of the outputs 

of multiple OMR programs and multiple image sources to 

improve the accuracy of the final output.  The second approach 

will combine information from several source images as input to 

the recogniser, so as to increase the accuracy of the recogniser 

itself. At this early point in the research, many difficulties have to 

be addressed. We outline some of these below. 

7.1 Towards an Automatic and Extended 

Process 
The majority of OMR tools are proprietary, which places limits on 

the extent to which we are able to extend and modify them. This 

presents challenges, not only for creating any automatic “batch 

process”, but also in the correct transcription of the output. 

Nonetheless, a key requirement is for us to automate the process 

of indexing and accessing the images available online, where 

necessary pre-processing them into the input format required by 

each OMR software (e.g. SharpEye requires tiff input as separate 

pages), and collecting and transforming the output into a form 

suitable for our multiple OMR is not a straightforward task. 

Of particular concern is the amount of data we have to process. 

The overall system will naturally be modular, with various stages 

of processing in a pipeline, potentially running across different 

operating systems. The systems architecture for this system will 

be based on industry standard free/open source systems, such as 

the cross platform ZeroMQ for high performance, asynchronous 

messaging between modules, the Postgres traditional SQL 

database, and potentially the Mogile distributed filesystem. 

7.2 Optimising the Algorithm Performance 
The structure implemented is separated in three different sub-

processes, but redundant tasks are involved. For a prototype, it is 

interesting to have three processes separated in order to analyse 

results. However, for a larger scale, good performance is a crucial 

point. In the next implementation, the subtasks S1 and S3 will be 

merged and applied only to wrong measures from S2. 

7.3 Pre-processing of Score Images based on 

Multiple Sources 
Part of our team is working in the improvement of images based 

on different sources. In fact, this second research will be the first 

building block of our project. The pre-processing of images will 

provide an improved input to the multiple OMR system. The 

general idea is to perform a prior segmentation and analysis of 

images in a fast and reliable fashion, and use this information to 

inform later decisions in the multi-OMR process.  

For printed scores, we can generally assume roughly parallel 

horizontal lines constituting staffs, with vertical lines that cut 

though one or more staffs to form a block structure that can be 

detected and segmented from one another. Through application of 

image processing techniques, we will be able to segment images 

into their constituent bars during such a pre-processing stage and 

feed them into multi-OMR separately. We will then be certain that 

the outputs from multiple OMR are from the same part of the 

score, without relying upon a post-alignment step. 

Having broken a score down into measure segments, we will be 

able to apply further image processing techniques, applying 

metrics to profile each segment. We expect to find several uses for 

such data, with focus on matching bars across several scores of 

the same music, so that multiple scores can be fed into OMR, and 

the results merged towards higher accuracy. We will evaluate 

metrics which are stable across multiple scans of the same score. 

Our hypothesis is that naïve approaches to image processing, such 

as image moment and axis of orientation, will prove robust 

despite taking little account of musical content of the images. 

7.4 Profiling OMR Tools 
By building a profile of the strengths and weaknesses of each 

OMR tool, we will be able to calibrate multi-OMR accordingly. 

For example, we can rank the performance of OMR tools for 

dealing with poor quality scores, perhaps by introducing 

additional noise to source images, and comparing the degradation 

in the quality of OMR results from each tool. We would then be 

able to analyse actual source images to measure aspects of scan 

quality, and take this into account when merging the resulting 

OMR output. 

A crucial part of our project will be to automate the process of 

profiling, using on-line sources of image and symbolic data, with 

appropriate estimates of the accuracy of the symbolic data as 

CP PS SE SS S2

Gory (15p) 89.67 95.02 90.38 90.55 95.33

k387_cello (6p) 83.44 89.61 88.07 90.54 93.25

k387_v I (9p) 82.65 88.62 85.52 87.27 92.19

k387_v II (6p) 85.45 89.54 87.08 89.35 94.07

k387_vla (6p) 87.41 88.38 86.99 89.84

k421_cello (4p) 85.96 90.23 90.37 91.06 96.31

k421_v I (6p) 80.43 87.24 85.46 89.14 93.83

k421_v II (6p) 80.67 88.24 85.35 90.28 93.07

k421_vla (6p) 89.99 89.09 89.82 92.74

Average 84.04 89.54 87.74 89.44 93.40

http://github.com/MultiOMR


ground truth. This will allow us to produce more reliable and 

comprehensive data on the accuracy of different OMR tools than 

has been possible in previous smaller scale research (e.g., [2] and 

[9].) 

8. CONCLUSIONS 
OMR is the only realistic means of making the information in the 

vast quantity of music scores held by libraries open to digital 

processing. However, as indicated above, the current state of the 

art does not produce sufficiently accurate results to make it 

worthwhile for any library to undertake a significant project to 

convert its holdings to digital symbolic form.  

The research reported here is part of a project which takes a 

different approach to traditional OMR which attempts to 

recognise symbolic information from an image of a score. Instead 

we focus on exploiting multiple sources of information. Around 

35% of the pieces of music in IMSLP have some kind of multiple 

information, e.g. scans of different editions, more than one scan of 

the same score, scans of full score and parts, and/or other 

combinations. This redundant information, in combination with 

the outputs of different OMR software, multiplies the amount of 

data to process, but improves the possibility of producing an 

accurate result. 

The experiments reported here are preliminary and in a small 

scale, but the results are encouraging. While we do not envisage 

that this project alone will produce a tool sufficiently accurate for 

general use in digital music libraries, we do hope to make 

significant progress in that direction, and we do hope to produce 

software which will make it easier for the dedicated musicologist 

to compile symbolic datasets for computational music research. 
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