| ive Coding

| Live coders write programs on the fly. They program in
| conversation with their machine, playing with instructions

while a computer follows them. Here, there is no distinction
between creating and running a piece of software — programs run while
they are being created, gaining complexity via source code edits. We can
think of coding live in the sense of working on electricity live, re-routing
the flows of control around a program with the real danger that a faulty
loop will get activated, causing the program to crash in sparks of logic.

Live coding environments make it possible to write code to generate
music and video in real-time without having to restart any processes.
Every adjustment to the code such as adding analgorithm to modulate a
rhythmic back beat, or adjusting the inner workings of a video filter is
immediately reflected in the audio or video output with no break.

It is not only the relationship between programmer and code that
defines live coding, but also that between programmer and audience. Live
coding can be a performance art, where an audience watches an artist
write code while enjoying the output. As with all improvisations some
preparation is necessary, but for many the aim is to begin with an empty
text editor and live code their performance from scratch.

It can be difficult to pin down the definition of live coding. For
example, what is the real difference between changing a number in a piece
of source code and moving a slider in a graphical interface? The following
points clarify some misconceptions underlying this kind of confusion.

Rules must be explicit. We may be inventing and changing rules all the
time in our heads, but unless those rules are written down and modified while
they are being followed by a computer (or other agent), that is not live coding.

Higher order functions must be defined and manipulated. A human
musician could be described as an intricate, perhaps beautifully composed
function that live codes itself. Here however we are interested in live coding
within formal languages, with support for abstraction and composition.



An audience is not required. We can live code on our own, with a few
friends or in a stadium, it is up to us (and our publicists).

Live coding is not an island. Live coders often perform with other kinds
of musicians and indeed most live coders have musical training wider than
only computer music.

Mechanics

Live coding of music, video and other time-based works presents a
technical problem — how to dynamically change a running program
without unwanted discontinuities in the output. There are many different
solutions, with a few described below.

In Object Oriented Programming (OOP), hot swapping methods are
common. A method is a responder to some kind of message, so it is quite
straightforward to arrange for a message to arrive at an alternate, newly
coded method.

In lisp-like languages, temporal recursion is a common form of live
coding, for example as described by Sorensen and Brown (2007). These are
functions which call themselves with some temporal delay, where
functions may be replaced for the next call.

In the pure functional language Haskell, live coding is made possible
through state injection (Stewart and Chakravarty, 2005). Here state is
managed by monadic computations, and passed back to a static core
during the reload of dynamic parts.

In SuperCollider there is something more like a a contemporary form of
conversational programming, where an object oriented language is used
to manipulate and communicate with synthesis graphs.

Source code feedback is an technique whereby a live coded program
may make edits to its own source code (McLean, 2004). This is most useful
in inserting comments to give the programmer feedback on the running of
the program.

Live Coding Culture
Computers’re bringing about a situation that’s like the

invention of harmony. Sub-routines are like chords. No one
would think of keeping a chord to himself. You’d give it to



anyone who wanted it. You’d welcome alterations of it. Sub-
routines are altered by a single punch. We’re getting music
made by man himself: not just one man.

John Cage (1969).

A number of fully fledged environments designed for live coding music
and/or video have emerged in the past few years. The most well known
are SuperCollider (McCartney, 2002), ChucK (Wang and Cook, 2004) and
Fluxus (Griffiths, 2008), all three of which are FLOSS (Free/Libre/Open
Source Software). The scheme-based Impromptu (Sorensen and Brown,
2007) is gaining traction, with freeware binaries available. We should also
add Pure Data Puckette (1996) to the list; while the syntax is in the form
of a graph, it remains a language with textual identifiers where live edits
are the norm. The use of home brew environments is also common, often
built around general purpose languages such as Perl, Python, Ruby and
Haskell.

The communities around live coding environments are strong, with
commonplace swapping of synthesis unit generators, scripts and patches.
Here there is no clear line between software and music; by using someone
else’s synthesis library, you are in collaboration with them, making an
audio collage of their technique and your own. The code sharing goes
beyond synthesis libraries however. The snippets of code passing by
email, demonstrating some technique or sharing a pleasing pattern, are
perhaps equivalent to an oral tradition where nothing is fixed, just
modified and passed on. By participating you contribute towards a
cultural evolution of music.

Informal sharing of code is lifted into live improvisation in the
performances of powerbooks unplugged (Rohrhuber et al., 2007). The
players, of which there may be six or more, play together by passing
SuperCollider patches over a wireless network. The code is shared via a
simple chat system like interface, where themes may be collaboratively
developed and call-response games played through source code edits.
They avoid what they see as problems of artistic ego by rejecting any
stage and playing as audience members, with the only sound emitting
from their laptop speakers.

Instead of being reduced to commercial product, live coded music
places human activity in focus. According to Small (1998), music is
defined by all human activity around a performance, and the focus on
music as a product rather than an activity itself is only a very recent



aberration. Powerbooks unplugged can therefore be seen as returning live
coding to the roots of musical activity, and indeed the group themselves
see their laptops, unplugged from any central sound system, as acoustic
folk instruments.

Live Coding History Before Computers

Linguistically performative statements include 'T apologise’, 'T
promise’ and 'We find the defendant guilty as charged.' Saying is
literally doing. If the speaker has sufficient power, for example as an
elected official, they may use performative statements to make rules
which others must follow. To prevent things getting too messy, they
will make rules about how future rules are made. The result is a
system of law which includes how laws are made and changed,
perhaps with the unchangeable nucleus of a constitution. Yes, we can
view parliament as hardware, the law as software and politicians and
voters as live coders.

However, examples within the realm of music are elusive — it does
seem as though live coding of music began after the invention of
computers. The experimental musicians of the 1960s explored rule based
composition but even then did not, as far as we have heard, improvise
those rules during performances.

Dynamic Programming

Outside of the context of time based arts, live coding is generally
termed dynamic programming. It began in the form of bit twiddling -
modifications of low level machine instructions while they were being
followed. This was done for debugging, experimentation, and hackerly
fun, although in the early days of computing, hands-on access to
computers was hard to come by. The demand for dynamic edits continued
with arrival of the classic languages Lisp, FORTH and Smalltalk, which
are indeed still used for live coding today.

The term conversational languages (Kupka and Wilsing, 1980) gained
some traction in the late 1970s, where a computer operator worked by
typing a line of code, getting a response, and then typing a further line. It
seems a shame that this term has fallen into disuse, but the idea is very
much alive as what we now know as command line languages or shells.
Indeed, the standard shells found on UNIX based operating systems are
fully fledged programming languages.



Live Music

There are claims that The Hub were early live coders, although band
members themselves do not make this claim. They performed with early
networked computers from the mid 1980s, but did not make substantial
live edits to running source code. They did, however, allow audience
members to walk around them and see their screens, a position which has
relevance as we will see.

Nonetheless, dynamic interpreted languages such as Lisp, Forth and
HMSL were used to improvise music around this time, the earliest known
example being by Ron Kuivila at STEIM, Amsterdam in 1985. Further
work in establishing a historical record of live coding of this era is badly
needed.

Live coding as a cultural movement grew from the release of
SuperCollider 3 and ChucK. In Europe, the Changing Grammars
meeting in 2004 was a particular turning point, where practitioners
met to explore new possibilities of live coding. The attendees where
largely from the SuperCollider community but members of slub
where also present, including Adrian Ward who demoed his
Map/MSG and PureEvents live coding software. An international
link up of sorts was made with Ge Wang of ChucK, and so the cross
platform live coding community was formed. All it needed was a
name, later plucked out of the smoky air of a late night bar; TOPLAP
(Ward et al., 2004).

Show Us Your Screens

In contrast to musical instruments directly plucked, struck and bowed
by a human performer, the movements of a live coded performance all
happen inside a computer. The live coder may be typing furiously, but it is
the movement of control flow and data inside the computer that creates
the resonances, dissonances and structure of music.

It is no surprise then that many live coders choose to project their
screens, so that the audience may see something of the music production.
This live freeing of software as part of an improvised performance might
itself be considered avant garde.

Whether the audience is expected to follow the projected code is an
open question. We may see a guitarist move their fingers across a fret
board, and feel closer to the music as a result, but do we need to follow



and understand what these movements mean? Absolutely not. But there
remains a strong sense that the performance is opened up to us by being
able to see the movement behind it.

No wonder then that we hear anecdotes of audience members feeling
alienated by laptop performances where screens are hidden. They could
close their eyes, but couldn’t they then have stayed at home, listening to a
recording? However, many question whether projection of screens distract
from a musical performance. If an audience can see the code behind a
performance they may feel obliged to read it, moving their attention away
from the sounds produced from it. Worse, if they do not know the
programming language in use, then they may end up feeling just as
alienated.

There is a logic then behind overlaying, where several screens are
projected on top of one another, for example as practised by the live
coding band slub. This amounts to obfuscation, where the audience can
see fragments of code but no overall picture. They can observe the music
being made, but their attention is directed away from the detail and
instead to more important things such as the music, their neighbour or
their drink.

Another alternative is to try to make the language more
understandable to a lay audience, for example by using language with a
simplified syntax, choosing highly descriptive variable names and so on.
Griffiths (2008) takes this approach to artful proportions, making highly
colourful miniature live coding environments embedded in his 'Fluxus'
live coding language, controlled entirely from a gamepad. One example is
'Al-Jazari', where on-screen musical robots are controlled from a set of
instructions specified using icons, including jump instructions for Turing
completeness.

Licensing

These projected screens allow ad-hoc software distribution. We can
compare live coding culture to the hacker culture around early
computers as characterised by Levy (2002), in that freedom is the
unchallenged norm. No thought is given to licenses of performance
code, instead permissive and respectful sharing of algorithmic ideas
and techniques is assumed. That an audience member could
photograph the screen, download a interpreter that night and play with
the algorithms themselves adds something to the atmosphere around the
music.



Whether this free atmosphere will persist, or will be tempered by future
commercial involvement is unsure. However, even within free culture,
issues of copyleft will undoubtedly rear their head. Projecting a screenful of
code constitutes ‘propagation’ in the terms of licenses such as the GPL.
Indeed producing live music via the *fixed form’ of source code could have
wider ramifications for copyright . Perhaps we should enjoy the free sharing
idealism while it lasts.

Coder Creativity

The practice of programming is informed by the corporate world of
business software, with its talk of formal design, unit testing and ISO
quality assurance. This all attempts to drive the creativity out of
programming so that software may be as predictable as possible. The
result is a cultural role of programmer as implementer and facilitator
rather than creative individual.

This can lead to the bizarre situation where programmers make
commercial software which practically generates music, and yet somehow
the users of the software are seen as being more creative than the
programmers. Here the programmers encode their musical style in the
software, and the users do little beyond guiding the software to a
destination pleasing to them. This can be seen in filters and plugins of
music studio software as well as explicitly generative commercial
applications such as Sseyo Koan Pro. The creativity of programmers is
tapped into flattery of paying users.

It has to be said that this commercially-driven culture at times
influences FLOSS music software culture, where programmers work to
produce musical interfaces non-paying users. There are dark moments
when free software is accused of mimicking commercial software with
some justification.

With live coding, everyone is a programmer. There is understanding
and respect that end user programmers have for those developing live
coding language environments that is very different to that users have for
anonymous brands of closed source software.

Perhaps this is an area where live coding can contribute something
back to FLOSS culture in the form of alternative role models. Instead of
stifling early enthusiasm of young programmers with vocational training,
ad-hoc human creativity with all the mess of dynamic, serendipitous
explorations can be encouraged and supported.



Bibliography

John Cage. John Cage: Writer, chapter Art and Technology, Cooper Square Press
1969.

Dave Griffiths, Fluxus - a rapid prototyping, livecoding and playing/learning
environment for 3d graphics and games. online; http://pawfal.org/fluxus/, 2008.

Kupka and Wilsing, Conversational Languages. John Wiley and Sons, 1980.

Steven Levy, Hackers: Heroes of the Computer Revolution. Penguin Putnam,
January 2002.

James McCartney, 'Rethinking the computer music language: Supercollider',
Computer Music Journal, 26(4):61-68, 2002.

Alex MclLean. 'Hacking perl in nightclubs', 2004,
http://www.perl.com/pub/a/2004/08/31/1ivecode.html,

Miller Puckette. Pure data: another integrated computer music environment.
In In Proceedings, International Computer Music Conference, pages 269-272, 1996.

Julian Rohrhuber, Alberto de Campo, Renate Wieser, Jan-Kees van Kampen, Echo Ho,
and Hannes H81z1, Purloined letters and distributed persons, 2007.

Christopher Small. Musicking: The Meanings of Performing and Listening
(Music/Culture). Wesleyan, June 1998. ISBN 0819522570.

Andrew Sorensen and Andrew Brown, 'Aa-cell in practice: an approach to musical
live coding', Proceedings of the International Computer Music Conference, 2007.

Don Stewart and Manuel M. T. Chakravarty. Dynamic applications from the
ground up. In Proceedings of the ACM SIGPLAN Workshop on Haskell. ACM Press,
September 2005.

Ge Wang and Perry R. Cook. On-the-fly programming: using code as an expressive
musical instrument. In NIME ’"04: Proceedings of the 2004 conference on New
interfaces for musical expression, pages 138-143. National University of
Singapore, 2004.

Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex MclLean, Dave Griffiths,
Nick Collins, and Amy Alexander, Live Algorithm Programming and a Temporary
Organisation for its Promotion 2004.



