
Making Programming Languages
to Dance to: Live Coding with Tidal

Alex McLean
Interdisciplinary Centre for Scientific Research in Music, University of Leeds

a.mclean@leeds.ac.uk

Abstract
Live coding of music has grown into a vibrant international com-
munity of research and practice over the past decade, providing a
new research domain where computer science blends with the per-
forming arts. In this paper the domain of live coding is described,
with focus on the programming language design challenges in-
volved, and the ways in which a functional approach can meet
those challenges. This leads to the introduction of Tidal 0.4, a Do-
main Specific Language embedded in Haskell. This is a substan-
tial restructuring of Tidal, which now represents musical pattern
as functions from time to events, inspired by Functional Reactive
Programming.

Categories and Subject Descriptors J.5 [Performing Arts]; J.5
[Music]; D.3.2 [Applicative (functional) languages]

Keywords domain specific languages; live coding; music

1. Introduction - Live programming languages
for music

Live coding is where source code is edited and interpreted in or-
der to modify and control a running process. Over the past decade,
this technique has been increasingly used as a means of creating
live, improvised music (Collins et al. 2003), with new program-
ming languages and environments developed as end-user music in-
terfaces (e.g. Wang and Cook 2004; Sorensen 2005; Aaron et al.
2011; McLean et al. 2010). Live coding of music and video is now a
vibrant area of research, a core topic in major Computer Music con-
ferences, the subject of journal special issues (McLean et al. 2014),
and the focus of international seminars (Blackwell et al. 2014). This
research runs alongside emerging communities of live coding prac-
titioners, with international live coding music festivals held in the
UK, Germany and Mexico. Speculative, isolated experiments by
both researchers and practitioners have expanded, developing into
active communities of practice.

Live coding has predominantly emerged from digital perform-
ing arts and related research contexts, but connects also with ac-
tivities in Software Engineering and Computer Science, under the
developing umbrella of live programming language research (see

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FARM ’14, September 6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3039-8/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633638.2633647

for example the proceedings of the LIVE workshop, ICSE 2013).
These intertwined strands are revitalising ideas around liveness first
developed decades ago, explored in now well-established systems
such as Self, SmallTalk, Lisp, command line shells and indeed
spreadsheets. Continuing this tradition, and making programming
languages “more live” is of interest in terms of making program-
ming easier to teach and learn, making programs easier to debug,
and allowing programmers to more easily achieve creative flow
(Blackwell et al. 2014). How these different strands weave together
is not always clear, but cross-disciplinary engagement is certainly
warranted.

2. Live coding as a design challenge
Live coding of music brings particular pressures and opportunities
to programming language design. To reiterate, this is where a pro-
grammer writes code to generate music, where a running process
continually takes on changes to its code, without break in the mu-
sical output. The archetypal situation has the programmer on stage,
with their screen projected so that the audience may see them work.
This might be late at night with a dancing nightclub audience (e.g.
at an algorave; Collins and McLean 2014), or during the day to a
seated concert hall audience (e.g. performance by laptop ensemble;
Ogborn 2014), or in more collaborative, long form performance
(e.g. slow coding; Hall 2007). The performer may be joined by
other live coders or instrumental musicians, or perhaps even chore-
ographers and dancers (Sicchio 2014), but in any case the program-
mer will want to enter a state of focused, creative flow and work
beyond the pressures at hand.

There are different approaches to live coding music, but one
common approach is based on an improvised Jazz model. The mu-
sic is not composed in advance, instead the music is developed
through live interaction, with live coders ‘playing off’ each other,
or shaping the music in sympathy with audience response. The im-
provisers might add extra constraints, for example the live coding
community in Mexico City is known to celebrate the challenge of
live coding a performance from scratch, each of which lasts pre-
cious few minutes. “Slow coding” is at the other end of the scale,
exploring a more conversational, meditative ethos (Hall 2007).

At this point it should be clear that live coding looks rather dif-
ferent from mainstream software engineering. There is no time for
test driven development, little time to develop new abstractions,
and where the code is deleted at the end of a performance, there
are no long-term maintenance issues. However, live programming
languages for music do have strong design pressures. They need to
be highly expressive, both in terms of tersity, and also in terms of
requiring close domain mapping between the code and the music
that is being expressed. As music is a time-based art-form, repre-
sentation of time structures is key. Familiar mechanisms such as
revision control may be employed in unusual ways, supporting re-
peating structures such as chorus and verse, where code is branched

63

and merged within short time frames, creating cyclic paths of de-
velopment.

2.1 Liveness and feedback
It is worth considering what we mean by the word live. In prac-
tice, the speed of communication is never instantaneous, and in that
sense nothing is completely live. Instead, let us consider liveness in
terms of live feedback loops, where two agents (human or compu-
tational) continually influence one another. We can then identify
different forms of liveness in terms of different arrangements of
feedback loops.

In a live coded performance, there are at least three main feed-
back loops. One is between the programmer and their code; making
a change, and reading it in context alongside any syntactical errors
or warnings. This loop is known as manipulation feedback (Nash
and Blackwell 2011), and may possibly include process and/or data
visualisation through debugging and other programmer tools. A
second feedback loop, known as performance feedback (Nash and
Blackwell 2011), connects the programmer and the program out-
put, in this case music carried by sound. In live coding of music, the
feedback cycle of software development is shared with that of mu-
sical development. The third loop is between the programmer and
their audience and/or co-performers. We can call this feedback loop
social feedback, which is foregrounded at algorave events, where
the audience is dancing. Together these feedback loops connect the
programmer with the live, passing moment.

2.2 Programming Language Paradigms for Music
A large number of programming languages have been designed for
algorithmic music composition and digital sound processing (DSP)
over the past few decades, for example ChucK, SuperCollider,
Max/MSP, HMSL, Common Music and the MusicN languages. As
processor frequencies have increased, the promise of realtime pro-
cessing has put new design pressures on languages. Live coding has
emerged over the past decade, along with the promise of realtime
programming as an exploratory activity. This has been a social de-
velopment as much as a technological one – although there have
been breakthroughs, much of the technology was already in place.

There are a range of programming language paradigms in com-
puter music. Perhaps the most dominant paradigm is dataflow pro-
gramming; declarative functions which do not return any values,
but take streams of data and inputs, and send streams of out-
put to other functions as a continual side effect. These languages,
such as Max/MSP, PureData and VVVV, usually have a graphi-
cal “Patcher” interface, where words are contained within ‘boxes’,
connected with ‘wires’ to form the dataflow graph. The accessi-
bility of these systems may be attributed to their similarity to the
analogue synthesisers which preceded and inspired them (Puckette
1988).

The most common paradigm in live coding performance seems
to be functional programming; many live coding environments
such as Overtone, Fluxus and Extempore are Lisp dialects, and
the pure functional language Haskell is the basis of a number of
live music EDSLs (embedded domain specific languages); namely
Conductive (Bell 2011), Live-Sequencer (Thielemann 2012) and
Tidal. The Tidal language is introduced in the following section,
with emphasis on its approach to the representation of time.

3. Introducing Tidal
Tidal represents many years of development, and the present paper
supersedes earlier work (McLean and Wiggins 2010), with several
major rewrites since (§6). At its essence it is a domain specific lan-
guage for musical pattern, of the kind called for by Spiegel (1981),
and present within many other systems including HMSL, Super-
Collider (McCartney 2002) and ixilang (Magnusson 2011). Tidal

0 1 2 3 4

Figure 1. The Tidal timeline as an infinite spiral, with each cycle
represented as a natural number, which may be subdivided at any
point as a rational number.

has been developed through use, informed by many dozens of high
profile performances to diverse audiences, and within diverse col-
laborations. The present author has predominantly used it within al-
gorithmic dance music (Collins and McLean 2014, algorave;) and
improvised free Jazz performances (Hession and McLean 2014),
as well as in live art (McLean and Reeve 2012) and choreographic
(McLean et al. 2014) collaborations. The software is available un-
der a free/open source license, and it now has a growing community
of users (§7).

Tidal is embedded in the Haskell language, taking advantage
of its rich type system. Patterns are represented using the below
datatype, which we will explain in the following.

type Time = Rational
type Arc = (Time , Time)
type Event a = (Arc , Arc , a)
data Pattern a = Pattern (Arc → [Event

a])

3.1 Representing Time
In Tidal, time is rational, so that musical subdivisions may be stored
accurately as simple fractions, avoiding rounding errors associated
with floating point. Underlying this is the assumption that time is
structured in terms of rhythmic (or more correctly, metric) cycles, a
perceptual phenomena that lies at the basis of a great many musical
traditions including Indian classical (Clayton 2008), and electronic
dance musics. The first beat of each cycle, known as the sam, is
significant both for resolving the previous cycle and for starting the
next. The number line of whole numbers represents successive sam
beats.

The Tidal timeline can be conceptualised as a spiral, as Fig.
1 illustrates; both repeating and progressing. Although this is a
cyclic structure, cycles will often change from one cycle to the next.
Indeed, polyrhythms are well supported in Tidal, but this assumed
cyclic structure acts as the metric anchor point for Tidal’s pattern
operations.

In practice, when it comes to turning a pattern into music, how
cycles relate to physical time depends on how fast the musician
wants the music to go. This is managed externally by a scheduler,
and multiple live coders can share a tempo clock over a network
connection, so that their cycles are locked in phase and frequency,
and therefore playback of their patterns is in time.

In sympathy with the focus on cycles, as opposed to the linear
progression of time, a time range is called an Arc, specified with
start and stop time. When an arc represents the occurrence of a
musical event, the start and stop are known as the event onset and
offset, which are standard terms borrowed from music informatics.

64

An Event associates a value with two time arcs; the first arc
gives the onset and offset of the event, and the second gives the
’active’ portion. The second arc is used for cases where an event is
cut into pieces; it is important for each piece to store its original arc
as context.

Finally, a Pattern is represented as a function, from an Arc to a
list of events. To retrieve events from the pattern, it is queried with
an Arc, and all the events active during the given time are returned.
The arcs of these events may overlap, in other words supporting
musical polyphony without having to deal with events containing
multiple values (although Tidal events which contain chords rather
than atomic events are certainly possible).

All Tidal patterns are notionally infinite in length; they cycle
indefinitely, and can be queried for events at any point. Long-
term structure is certainly possible to represent, although Tidal’s
development has been focused on live coding situations where such
structure is already provided by the live coder, who is continually
changing the pattern.

This use of functions to represent time-varying values borrows
ideas from Functional Reactive Programming (Elliott 2009). How-
ever, the particular use of time arcs appears to be novel, and al-
lows both continuous and discrete patterns to be represented within
the same datatype. For discrete patterns, events active during the
given time arc are returned. For continuous structures, an event
value is sampled with a granularity given by the duration of the
Arc. In practice, this allows discrete and continuous patterns to
be straightforwardly combined, allowing expressive composition of
music through composition of functions.

3.2 Building and combining patterns
We will now look into how patterns are built and combined in Tidal.
Our focus in this section will be on implementation rather than use,
but this will hopefully provide some important insights into how
Tidal may be used.

Perhaps the simplest pattern is silence, which returns no events
for any time:

silence :: Pattern a
silence = Pattern $ const []

The ‘purest’ discrete pattern is defined as one which contains
a single event with the given value, for the duration of each cycle.
Such a pattern may be constructed from a single value with the pure
function, which Tidal defines as follows:

pure x =
Pattern $ λ(s, e) →

map (λt → ((t%1, (t+1) %1),
(t%1, (t+1)%1),
x

)
)
[floor s .. ((ceiling e) - 1)]

This is an internal function which is not often used directly; we
will show alternative ways of constructing patterns later.

Having constructed some patterns, we can combine them in dif-
ferent ways. For example, the cat function returns a pattern which
cycles through the given list of patterns over time. The patterns are
interlaced, i.e. taking the first cycle from each pattern, then the sec-
ond, and so on. To make this possible, the resulting pattern needs
to manipulate time values that are passed to it, forward those val-
ues on to the patterns it encapsulates, and then manipulate the time
values of the events which are returned.

Although Tidal is designed for musical pattern, our example
patterns will be of colour, in sympathy with the current medium.
The x axis represents time travelling from left to right, and the y
axis is used to ‘stack up’ events which co-occur. Here we visualise
the first cycle of a pattern, which interlaces pure blue, red and
orange patterns:

cat [pure blue , pure red , pure orange]

We can use the density combinator to squash, or ‘speed up’ the
pattern so we can see more cycles within it:

density 4 $ cat [pure blue , pure red , pure
orange]

Like cat, density works by manipulating time both in terms of
the query and the resulting events. Here is its full definition, along
with its antonym slow:

density :: Time → Pattern a → Pattern a
density 0 p = p
density 1 p = p
density r p =

mapResultTime (/ r) (mapQueryTime (∗ r) p)

slow :: Time → Pattern a → Pattern a
slow 0 = id
slow t = density (1/t)

The combinator slowcat can be defined in terms of cat and
slow, so that the resulting pattern steps through the patterns, cycle
by cycle:

slowcat :: [Pattern a] → Pattern a
slowcat ps =

slow (fromIntegral $ length ps) $ cat ps

Now when we try to visualise the previous pattern using
slowcat instead of cat, we only see blue:

slowcat [pure blue , pure red , pure orange]

This is because we are only visualising the first cycle, the others
are still there.

The definition for combining patterns so that their events co-
occur is straightforward:

overlay :: Pattern a → Pattern a →
Pattern a

overlay p p’ = Pattern $ λa → (arc p a) ++
(arc p’ a)

stack :: [Pattern a] → Pattern a
stack ps = foldr overlay silence ps

65

stack [pure blue , pure red , pure orange]

The vertical order of the events as visualised above is not mean-
ingful; that the events co-occur simply allow us to make ‘poly-
phonic’ music, where multiple events may sound at the same time.

By combining the functions we have seen so far, we may already
begin to compose some interesting patterns:

density 16 $ stack [pure blue ,
cat [silence ,

cat [pure green ,
pure yellow]

],
pure orange]

3.3 Parsing strings
The functions we have defined so far for constructing patterns are
quite verbose, and therefore impractical. Considering that Tidal is
designed for live musical performance, the less typing the better.
So, a simple parser p is provided by Tidal, for turning terse strings
into patterns, with syntax in part inspired by the Bol Processor (Bel
2001). The previous colour pattern example may be specified with
this syntax as follows:

p "[blue , ∼ [green yellow], orange]∗16"

So, values within square brackets are combined over time with
cat, and stacked if they are separated by commas. A pattern
can have its density increased with ∗. Silence is specified by ∼,
analogous to a musical rest.

For additional tersity, the GHC string overloading feature is
used, so that the p function does not need to be specified.

So far we have only shown the core representation of Tidal, but
this already allows us to specify fairly complex patterns with some
tersity:

"[[black white]∗32, [[yellow ∼ pink]∗3
purple]∗5, [white black]∗16]]∗16"

If curly brackets rather than square brackets are used, subpat-
terns are combined in a different way, timewise. The first subpat-
tern still takes up a single cycle, but other subpatterns on that level
are stretched or shrunk so that each immediate subelement within
them are the same length. For example compare the following two
patterns:

density 6 $ "[red black , blue orange green]"

density 6 $ "{red black , blue orange green }"

In musical terms, the first example would be described as a
triplet, and the latter a polyrhythm.

3.4 Patterns as functors
It is useful to be able to operate upon all event values within a
pattern irrespective of their temporal position and duration. Within
the functional paradigm, this requires the pattern datatype to be
defined as a functor. Because Haskell already defines functions
and lists as functors, defining Pattern as a Functor instance is
straightforward:

instance Functor Pattern where
fmap f (Pattern a) =

Pattern $ fmap (fmap (mapThd f)) a
where mapThd f (x,y,z) = (x,y,f z)

This already makes certain pattern transformations trivial. For
example, musical transposition (increasing or decreasing all musi-
cal note values) may be defined in terms of addition:

transpose :: (Num a) ⇒ a → Pattern a
→ Pattern a

transpose n pattern = fmap (+n) pattern

The Applicative functor is a little more complex, but allows
a pattern of values to be mapped over a pattern of functions. A
minimal definition of Applicative requires pure, which we have
already seen, along with the <∗> operator:

(Pattern fs) <∗> (Pattern xs) =
Pattern $ λa → concatMap applyX (fs a)
where applyX ((s,e), (s’, e’), f) =

map (λ(_, _, x) → ((s,e), (s’, e’), f
x))
(filter
(λ(_, a’, _) → isIn a’ s)
(xs (s’,e’))

)

In combination with <$> (which is simply fmap but in operator
form), the <∗> operator allows us to turn a function that operates
on values, into a combinator which operates on patterns of values.
For example, we can use the library function blend, which operates
on two colours, as a combinator which operates on two colour
patterns:

blend 0.5
<$> "[blue orange , yellow grey]∗16"
<∗> "white blue black red"

66

In the above, the blend function is only able to operate on pairs
of colours, but the applicative definition allows it to operate on
pairs of colours taken from ‘inside’ the two patterns. It does this
by matching co-occurring events within the first pattern, with those
in the second one, in particular the events in the second pattern
with arcs which contain the onset of those in the first pattern. For
example in the following red matches with the onsets of black and
grey, and green matches with the onset of white, so we end up
with a pattern resulting from blends of the colour pairs (red, black),
(red, grey) and (green, white).

(blend 0.5 <$> "[black grey white]"
<∗> "red green")

Notice that the resulting pattern will always maintain the ‘struc-
ture’ of the first pattern over time. However where an event in the
left hand pattern matches with multiple events in the right hand pat-
tern, the number of events within this structure will be multiplied.
For example:

(blend 0.5 <$> "[black grey white]" <∗>
"[red green , magenta yellow]")

4. Transformations
From this point, we will focus less on the implementation of Tidal,
and more on its use. Please refer to the source code for any imple-
mentation details.

Reversal Symmetry is fundamental to pattern, and so reversal is
a key operation in pattern manipulation. Because Tidal represents
a notionally infinite timeline, reversing a whole pattern is not pos-
sible. However, the notion of a cycle is core to Tidal, and reversing
each cycle within a pattern is relatively straightforward.

rev "blue grey orange"

every Reversing a pattern is not very interesting unless you con-
trast it with the original, to create symmetries. To do this, we can
use every, a higher order transformation which applies a given pat-
tern transformation every given number of cycles. The following
reverses every third cycle:

density 16 $ every 3 rev "blue grey orange"

whenmod is similar to every, but applies the transformation when
the remainder of the first parameter divided by cycle number is less
than the second parameter.

density 16 $ whenmod 6 3 rev "blue grey orange"

Shifting/turning patterns The <∼ transformation shifts a pattern
to the left, or in cyclic terms, turns it anticlockwise. The ∼> does
the opposite, shifting it to the left/clockwise. For example, to shift
it one third to the left every fourth repetition, we could do this:

density 16 $ every 4 ((1/3) <∼)
"blue grey purple"

The above shows every fourth cycle (starting with the first one)
being shifted to the left, by a third of a cycle.

iter The iter transformation is related to <∼, but the shift is
compounded until the cycle gets back to its starting position. The
number of steps that this takes place over is given as a parameter.
The shift amount is therefore one divided by the given number of
steps, which in the below example is one quarter.

density 4 $ iter 4 $
"blue green purple orange"

superimpose is another higher order transformation, which com-
bines the given pattern with the result of the given transformation.
For example, we can use this with the transformation in the above
example:

density 4 $ superimpose (iter 4) $ "blue green
purple orange"

Combining transformations All of these pattern transformations
simply return another pattern, and so we can compose transforma-
tions together to quickly create complex patterns. Because these
transforms operate on patterns as functions, and not simply lists,
this can be done to arbitrary depth without worrying about stor-
age; no actual events get calculated and manipulated until they are
needed. Here is a simple example:

whenmod 8 4 (slow 4) $ every 2 ((1/2) <∼) $
every 3 (density 4) $ iter 4

"grey darkgrey green black"

67

To visualise some of the repeating structure, the above image
shows a ten-by-twenty grid of cycles, scanning across and down.

5. Working with sound
The visual examples only work up to a point, and the multidimen-
sional nature of timbre is difficult to get across with colour alone.
In the case of Tidal, this multidimensional nature is evident in that
patterns of synthesiser parameters are defined, and combined into
patterns of synthesiser messages. In this way different aspects of
sound can be patterned into music independently, potentially cre-
ating polyrhythmic structure that plays across different aspects of
sound.

Tidal allows many aspects of sound, such formant filters,
spatialisation, pitch, onset and offset to be patterned separately,
and then composed into patterns of synthesiser control mes-
sages. Pattern transforms can then manipulate multiple aspects of
sound at once; for example the jux transform works similarly to
superimpose, but the original pattern is panned to the left speaker,
and the transformed pattern to the right. The striate pattern effec-
tively cuts a sample into multiple ‘sound grains’, so that those
patterns of grains can then be manipulated with further trans-
forms. For details, please refer to the Tidal documentation, and
also to the numerous video examples linked to from the homepage
http://yaxu.org/tidal.

6. Developing representation
As stated earlier (§3), Tidal has progressed through a number of
rewrites, with major changes to the core representation of pattern.
By request of a peer reviewer, here we look at this development
of pattern representation over time. Each was motivated by and
informally evaluated through live performance.

The first representation was based on a straightforward tree
structure, where sounds could be sequenced within cycles, and lay-
ered up as “polymetries”, co-occuring sequences with potentially
different meters.

data Event = Sound String
| Silence

data Structure = Atom Event
| Cycle [Structure]
| Polymetry [Structure]

Haskell’s default lazy behaviour allowed patterns to be repre-
sented of infinite length, but not with random access - if one pattern
is replaced with another, either the event generation would restart
from the first event, or the whole performance up to the point of
change would have to be regenerated.

Next, a more functional approach was taken, representing pat-
tern as a function from discrete time to events, along with the period
of the cycle.

data Pattern a =
Pattern {at :: Int → [a], period :: Int}

This was the basis of an earlier publication (McLean and Wig-
gins 2010), and worked reasonably well for particular styles of
electronic dance music, such as forms of acid house born from the
step sequencer. However, the discrete nature of time made it less
suitable for other genres, such as free jazz. This was worked around
to some extent by allowing a pattern of floating point time offsets
to be applied, but this did not allow for compound meters and other
musical structures.

Next a tree structure was returned to, but where cycles could
contain arcs, which had floating point onset and duration, allowing
a freer approach to time. The functional approach was preserved
in the Signal data constructor, but for continuous patterns which
continuously vary, rather than having discrete events which begin
and end.

data Pattern a = Atom {event :: a}
| Arc {pattern :: Pattern a,

onset :: Double ,
duration :: Maybe Double

}
| Cycle {patterns :: [Pattern

a]}
| Signal {at :: Double →

Pattern a}

Next, a simplification brought by the realisation that discrete
patterns could also be represented as functions from time ranges to
events:

data Pattern a = Sequence {arc :: Range →
[Event a]}

| Signal {at :: Rational → [a]}
type Event a = (Range , a)
type Range = (Rational , Rational)

This worked well, particularly the use of rational numbers to
represent musical time. However, trying to deal with these quite
different forms as equivalent caused great complexities in the sup-
porting code. The final insight, leading to the present representation
(shown in §3), is that both discrete sequences and continuous sig-
nals could be represented as the same type, simply by sampling the
midpoint of a range in the latter case.

7. The Tidal community
Over the past year, a community of Tidal users has started to grow.
This followed a residency in Hangar Barcelona, during which the
Tidal installation procedure was improved and documented. This
community was surveyed, by invitation via the Tidal on-line forum
(http://lurk.org/groups/tidal), encouraged to give honest
answers, and fifteen responded. Two demographic questions were
asked. Given an optional free text question “What is your gender?”,
10 identified as male, and the remainder chose not to answer. Given
an optional question “What is your age?”, 7 chose “17-25”, 4 chose
“26-40”, and the remainder chose not to answer.

68

Respondents were asked to estimate the number of hours they
had used Tidal. Answers ranged from 2 to 300, with a mean of 44.2
and a standard deviation of 80.8. We can say that all had at least
played around with it for over an hour, and that many had invested
significant time in learning it; the mode was 8 hours.

A surprising finding was that respondents generally had little or
no experience of functional programming languages before trying
Tidal. When asked the question “How much experience of func-
tional programming languages (e.g. Haskell, Lisp, etc) did you have
when you started with Tidal?”, 6/15 selected “No experience at all”,
6/15 selected “Some understanding, but no real practical experi-
ence” and 3/15 selected “Had written programs using functional
programming techniques”. No respondents said that they had “In
depth, practical knowledge of functional programming”.

Despite the general lack of experience with functional lan-
guages, respondents generally reported that they could make music
with Tidal (14/15), that it was not difficult to learn (11/15), and
that it had the potential to help them be more creative (13/15).
Furthermore, most said they could learn Tidal just by playing with
it (10/15), and that they didn’t need theoretical understanding in
order to use it for music (8/15). These answers were all captured
as Likert responses, see Figure 2. From this we conclude that de-
spite Haskell’s reputation for difficulty, these users did not seem to
have problems learning a DSL embedded within it, that uses some
advanced Haskell features.

This is very much a self-selecting group, attracted by what may
be seen as a niche, technological way to make music. Assessing
statistical significance is therefore difficult, but having learnt a little
about the background of respondents, we can turn to their qualita-
tive responses. These were in response to the free text question “In
general, what has your experience of using Tidal been like so far?”,
and were overwhelmingly positive, to the point that little critical
reflection was offered. An interesting aspect though is the extent to
which respondents explained their experience of Tidal in relation
both to music software as well as programming languages.

Respondent 1 (R1). Oddly it’s the only time I’ve tried
Haskell and seen any point in Haskell over other languages
I’ve played with. I think by starting as a sample player
you’ve immediately brought something like the 808 (or
rebirth, or hydrogen in the linux world) to text files.

R8. Tidal is the first music programming or algorithmic
music thingy I’ve tried which makes sense to me as a mu-
sician (they all make sense to me as a coder). It’s an in-
strument that motivates me to learn and discover my sound
within its capabilities, a unique piece of gear.

Others responded in terms of the creative change that using
Tidal has signalled.

R10. Tidal has a therapeutic value for me which stems
from its immediacy and the fact that I can modify patterns at
run-time and hear the results instantly. It means I find myself
’in the zone’ or in a state of ’flow’. It’s akin to jamming
through programming.

R12. Tidal has made a vast difference to my creative life
- I didn’t write music for 10 years after Fruityloops became
FL Studio with a more audio oriented approach (rather than
just being a solid pattern programmer) and could no longer
figure out how to put my more complex ideas to disk. Now
I’ve recorded a couple hours’ worth of music in under six
months which, in itself, is amazing to me.

R15. I’m loving it. It’s a great way in to functional
programming, and the pattern syntax has changed how I
think about digital representations of music

The Tidal user community remains small – there are currently
56 members of the online forum, and 164 ’stars’ and 24 forks on
github, and so it is difficult to generalise from these survey results.
However, it is encouraging that respondents report such positive ex-
periences despite lack of background in functional programming,
and future work is planned to bring out this reflection using Inter-
pretative Phenomenological Analysis (IPA; Smith 2004).

8. Discussion
We have given some context to live coding Tidal, described some
implementation details and a selection of the functionality it pro-
vides. This functionality is strongly supported by Haskell itself,
which has proved to be a language well suited for describing pat-
tern. This is borne out from a small survey of 15 Tidal users, who
generally reported positive learning experiences despite not being
experienced functional programmers.

Programming while people are dancing to your code makes the
abstract tangible. It is necessary to achieve creative flow in perfor-
mance, particularly in the form of improvised performance com-
mon in live coding practice. Flow is not a case of ‘losing yourself’,
but rather optimal, fully engaged experience. To experience cre-
ative flow while constructing abstract structure is something which
perhaps all programmers are familiar with and strive for, but to be
in this state while experiencing those abstract structures as sound,
together with a room full of people whose physical responses you
are both shaping and reacting to through the code, is a rare feeling.
It is not just about connecting with people, although that is a large
part of it. It is also the feeling of being in time. Everything counts,
not only what you type, but when. The live coder needs to be con-
tinually aware of the passing of time, so that the shift that comes
with the next evaluation fits with (or against) the expectations of
those listening or dancing to it.

Tidal fits within this process by being highly viscous and requir-
ing low cognitive load (Green 2000), therefore supporting playful
engagement and a high rate of change. The generality of the pattern
transformations means that live coders can apply a set of heuristics
for changing code at different levels of abstraction, as tacit knowl-
edge built through play. Live coding is a relatively young field, and
this tacit knowledge is still at early stages of development, as a cre-
ative and social process. Perhaps most excitingly for FARM, pro-
gramming language design is part of this process.

Acknowledgments
Thanks and gratitude to the members of the Tidal community for
their feedback, suggestions and input into the ongoing development
of Tidal.

References
S. Aaron, A. F. Blackwell, R. Hoadley, and T. Regan. A principled approach

to developing new languages for live coding. In Proceedings of New
Interfaces for Musical Expression 2011, pages 381–386, 2011.

B. Bel. Rationalizing musical time: syntactic and symbolic-numeric ap-
proaches. In C. Barlow, editor, The Ratio Book, pages 86–101. Feedback
Studio, 2001.

R. Bell. An Interface for Realtime Music Using Interpreted Haskell. In
Proceedings of LAC 2011, 2011.

A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber. Collaboration
and learning through live coding (Dagstuhl Seminar 13382). Dagstuhl
Reports, 3(9):130–168, 2014. . URL http://drops.dagstuhl.de/
opus/volltexte/2014/4420.

M. Clayton. Time in Indian Music: Rhythm, Metre, and Form in North In-
dian Rag Performance (Oxford Monographs on Music). Oxford Uni-
versity Press, USA, Aug. 2008. ISBN 0195339681. URL http:
//www.worldcat.org/isbn/0195339681.

69

I can make music with Tidal

Tidal has the potential to help me be
more creative

Tidal is difficult to install

Tidal is difficult to learn

I can learn Tidal just by playing with it

I would find Tidal much easier to use
if the documentation was clearer

Tidal has changed the way I think about
making music

I need theoretical understanding of Tidal's
implementation in order to use it for music

Strongly disagree Strongly agree

Figure 2. Likert scale questions from survey of Tidal users

N. Collins and A. McLean. Algorave: A survey of the history, aesthetics and
technology of live performance of algorithmic electronic dance music.
In Proceedings of the International Conference on New Interfaces for
Musical Expression, 2014.

N. Collins, A. McLean, J. Rohrhuber, and A. Ward. Live coding in laptop
performance. Organised Sound, 8(03):321–330, 2003. . URL http:
//dx.doi.org/10.1017/s135577180300030x.

C. Elliott. Push-pull functional reactive programming. In Proceedings of
2nd ACM SIGPLAN symposium on Haskell 2009, 2009.

T. R. G. Green. Instructions and descriptions: some cognitive aspects
of programming and similar activities. In AVI ’00: Proceedings of
the working conference on Advanced visual interfaces, pages 21–28,
New York, NY, USA, 2000. ACM. ISBN 1-58113-252-2. . URL
http://dx.doi.org/10.1145/345513.345233.

T. Hall. Towards a Slow Code Manifesto. Published online;
http://www.ludions.com/slowcode/, Apr. 2007.

P. Hession and A. McLean. Extending Instruments with Live Algorithms
in a Percussion / Code Duo. In Proceedings of the 50th Anniversary
Convention of the AISB: Live Algorithms, 2014.

T. Magnusson. ixi lang: a SuperCollider parasite for live coding. In
Proceedings of International Computer Music Conference 2011, 2011.

J. McCartney. Rethinking the Computer Music Language: Super-
Collider. Computer Music Journal, 26(4):61–68, 2002. URL
http://www.mitpressjournals.org/doi/abs/10.1162/
014892602320991383.

A. McLean and H. Reeve. Live Notation: Acoustic Resonance? In Proceed-
ings of International Computer Music Conference, pages 70–75, 2012.

A. McLean and G. Wiggins. Tidal - Pattern Language for the Live Coding
of Music. In Proceedings of the 7th Sound and Music Computing
conference 2010, pages 331–334, 2010.

A. McLean, D. Griffiths, N. Collins, and G. Wiggins. Visualisation of Live
Code. In Proceedings of Electronic Visualisation and the Arts London
2010, pages 26–30, 2010.

A. McLean, J. Rohrhuber, and N. Collins. Special issue on Live Coding:
Editor’s notes. Computer Music Journal, 38(1), 2014.

C. Nash and A. F. Blackwell. Tracking virtuosity and flow in computer
music. In Proceedings of International Computer Music Conference
2011, 2011.

D. Ogborn. Live coding in a scalable, participatory laptop orchestra.
Computer Music Journal, 38(1):17–30, Mar. 2014. . URL http:
//dx.doi.org/10.1162/comj_a_00217.

M. Puckette. The Patcher. In Proceedings of International Computer Music
Conference 1988, pages 420–429, 1988.

K. Sicchio. Hacking Choreography: Dance and Live Coding. Computer
Music Journal, 38(1):31–39, Mar. 2014. . URL http://dx.doi.org/
10.1162/comj_a_00218.

J. A. Smith. Reflecting on the development of interpretative phenomeno-
logical analysis and its contribution to qualitative research in psychol-
ogy. Qualitative Research in Psychology, 1(1):39–54, Jan. 2004. . URL
http://dx.doi.org/10.1191/1478088704qp004oa.

A. Sorensen. Impromptu: An interactive programming environment for
composition and performance. In Proceedings of the Australasian Com-
puter Music Conference 2005, pages 149–153, 2005.

L. Spiegel. Manipulations of Musical Patterns. In Proceedings of the
Symposium on Small Computers and the Arts, pages 19–22, 1981.

H. Thielemann. Live-Musikprogrammierung in Haskell. CoRR,
abs/1202.4269, 2012.

G. Wang and P. R. Cook. On-the-fly programming: using code as an ex-
pressive musical instrument. In Proceedings of New interfaces for musi-
cal expression 2004, pages 138–143. National University of Singapore,
2004.

70

