
Visualisation of Live Code

Alex McLean
Goldsmiths

University of London
alex@slab.org

Dave Griffiths
FoAM vzw

dave@fo.am

Nick Collins
University of Sussex

n.collins@sussex.ac.uk

Geraint Wiggins
Goldsmiths

University of London
g.wiggins@gold.ac.uk

In this paper we outline the issues surrounding live coding which is projected for an audience, and in
this context, approaches to code visualisation. This includes natural language parsing techniques, using
geometrical properties of space in language semantics, representation of execution flow in live coding
environments, code as visual data and computer games as live coding environments. We will also touch
on the unifying perceptual basis behind symbols, graphics, movement and sound.

Live coding, Visualisation, Improvisation, Music, Video, Computer games

1. INTRODUCTION

Live coding, the improvisation of video and/or music
using computer language, has developed into an
active field of research and arts practice over
the last decade (Wang and Cook 2004; Ward
et al. 2004; Collins et al. 2003). Live coding is
made possible by dynamic language interpreters,
which allow algorithms to run while they are being
modified, taking on changes without any break in
the audio or visual output generated by the code.
The development of software becomes part of the
art in a very real sense; at the beginning of a
typical live coded performance there is no code
and no audiovisual output, but the output grows in
complexity with the code.

A frequent criticism of computer music is the lack
of performance, where an artist hides behind their
laptop screen, and the audience is unable to see
any activity that might ground their experience
of the music (Cascone 2003). Solutions continue
to be explored, with many researchers focussing
on developing tangible interfaces which bring the
computer closer to a traditional instrument. However,
a live coding tradition has developed taking the
straightforward approach of projecting whatever is
on the artist’s screen: the code, moving cursors, the
debugging output... The audience is then able to see
the human movements and code structures behind
an improvisation.

This tradition of projecting screens is itself open to
criticism; the audience members may feel distracted,
or perhaps even excluded by the projection of
code written in language they do not necessarily
understand. The alternative of showing nothing,

hiding behind a laptop screen, is felt to be
untenable, but perhaps more should be understood
about the practice of projecting code. Watching
the articulations of a live guitarist may enhance
the experience of a listener who does not play a
musical instrument themselves. Can a live coder
elucidate the more abstract thinking gestures of their
practice? The search is on for ways of visualising
code development that allows non-programmers to
enhance their enjoyment and understanding of a live
coded piece.

2. PERCEIVING CODE

Generally, a programmer cannot work with their
eyes closed; a programmer’s text editor is a
visual interface1. Text editors have gained many
features over the last few decades, to the point
where we no longer call them text editors but
Interactive Development Environments (IDEs). The
visual presentation of code has developed its
own aesthetic; colour is used to highlight syntax,
fonts have been designed for code (e.g. ProFont,
proggy), and visual tools for navigating around tree-
like code structures. Nonetheless computation is
fundamentally about symbol manipulation, and the
composition of symbols lies at the heart of every
IDE. When our eyes saccade across code, the
shapes on the screen are categorised into these
symbols, and we perceive them as the tokens
(words) and statements (sentences) making up our
program. The computer interprets code as a one
dimensional string of discrete symbols, but humans
perceive it as symbols within a spatial scene. Expert
1A counter-example would be programming interfaces for the
blind, which employ speech synthesis.

1



Visualisation of Live Code -
McLean • Griffiths • Collins • Wiggins

programmers may be able to chunk larger blocks of
code as meaningful entities; less experienced live
code audiences may become stuck on small details,
but an elaborate dance of spatial change to code is
evident over time.

Our perception of source code is aided not only by
spatial organisation, but also by colour highlighting,
in-line documentation and the well chosen names
given to abstractions and data structures. These
features are collectively known as secondary
syntax2, being that ignored by the interpreter but
of benefit to programmers in understanding and
organising their code. A challenge to those pushing
the boundaries of programming language design is
to find ways of taking what is normally secondary
syntax as primary. For example the ColorForth
language uses colour as primary syntax, replacing
the need for punctuation. Even more radically, the
instruction set of the Piet language illustrated in
Figure 2 is formed by first order colour relationships
within a two dimensional grid; instructions include
directional modifiers so that control flow travels in
two dimensions. Piet, among many other esoteric
languages, is inspired by the two dimensional syntax
of Befunge shown in Fig. 1, a textual language where
arrow-like characters change the direction of control
flow. Some languages bordering on mainstream,
such as Haskell and to a lesser extent Python have a
syntax that takes two dimensional arrangement into
account when grouping statements, although this is
otherwise unusual.

Secondary syntax is of great importance to
human understanding, despite being ignored by
the computer interpreter. Without spatial layout and
elements of natural language a program would
be next to unreadable by humans. Humans live
an embodied existence in a spatial environment,
and while we are perfectly able to perform
computation, our spatial ability still supports such
thought processes (Gärdenfors 2000). As a result
source code, as Human Computer Interface, is
a half-way mixture of geometrical relations and
symbolic structures. This is true even of the ‘patcher’
dataflow languages in common use in the digital
arts (Puckette 1988), such as Max and PureData.
Patcher languages are often described as ‘visual’,
but in fact all the functions are defined textually, and
the visual arrangement is purely secondary syntax 3.
2The term ‘secondary syntax’ is problematic. Firstly, secondary
syntax is only secondary relative to the computer interpreter,
and not the human. Secondly, secondary syntax is not syntax
in any clear sense; indeed spatial relationships are the basis
of semantic meaning as understood in the field of cognitive
linguistics. However as secondary syntax is the standard term
used in the field of Human Computer Interaction (HCI) we persist
with using it here.
3In Max, left-right position alters execution order, although relying
upon this is discouraged in favour of the ‘trigger’ object.

Visualisation of code may either act as secondary
syntax in order to enhance code comprehension for
human viewers, or go further as primary syntax to
enhance meaning for both humans and computers.
The latter is of particular interest, as to some extent
it requires making models of human perception the
basis of computer language.

2.1. Morphology of Sound, Shape and Symbols

TurTan is a geometric visual live coding language
introduced by Gallardo et al. (2008), using the tech-
nology of the Reactable (Jordà et al. 2007). The
functions of the language are manipulated as phys-
ical blocks that are placed on a tabletop interface,
with nearest neighbours forming a sequence, and
relative angle mapping to the function’s parameter.
The functions describe turtle graphics operations,
and the resulting recursive forms are continuously
updated on the table surface display.

TurTan inspired a system by Alex McLean and
introduced here, with the working title of Acid
Sketching. In Acid Sketching, a sound is specified
simply by drawing a shape, where morphological
measurements are mapped to parameters of an
acid bassline synthesiser. The area of a shape is
mapped to pitch, its regularity (perimeter length vs
area) mapped to envelope modulation, and relative
angle of central axis mapped to resonance. Several
such shapes are drawn in an arrangement, where
a minimum spanning tree of their centroids is taken
as a polyphonic sequence, where distance equals
relative time. Feedback may be projected back on
to the drawing surface, so shapes flash red as they
are triggered. A static figure would not make this
clearer, however illustrative video is available online
at http://yaxu.org/acid-sketching/.

While Acid Sketching and TurTan are far from
what is typically understood as live coding, both
lead us to challenge understanding of the role
of symbols, shape and geometry in computation.
Investigating how such concrete forms of interaction
could be married with the abstractions of general,
Turing complete programming languages could be
an interesting research topic itself.

Critically connected to live coding engagement with
time-based media, is the time-based revelation of
code itself. For electroacoustic music, Pierre Scha-
effer’s theories of sound timbre have been further
dynamised into the time-variant sonic gestures of
Denis Smalley’s spectromorphology (Landy 2007).
For live coding, we might analogously dub ’codeo-
morphology’ as the changing shape of code over
time. Examples include the accumulating code re-
visions referenced on the edge of ChucK language
Audicle documents, or SuperCollider’s ‘History’ class

2



Visualisation of Live Code - McLean • Griffiths • Collins • Wiggins

to document a live code performance. More vi-
sual representations of change over time would
include accessible visualisations of programmer ac-
tivity. Metrics might be displayed to characterise
changes per second, from coarse keystroke counts
to the depth of parse tree disruption; this brings us to
self-evaluating performances, and coder re-coding of
their very visualisations...

3. VISUAL EXPERIMENTS IN LIVE CODE

This section serves to introduce four novel vi-
sual/geometric live coding systems by Dave Grif-
fiths, namely Scheme Bricks, Betablocker, Al-Jazari
and Daisy Chain, along with some of the systems
which inspired them. All of these languages were
constructed within Fluxus, a game engine designed
for live coding performances and experiments and
available under a free (GPL) license from http://
www.pawfal.org/fluxus/.

3.1. Execution flow and operational events

Computation is a metaphorical movement, where
algorithmic processes operate on data (which can
include the algorithms themselves) in memory in
the discrete time steps of the CPU. Ways of
visualising memory as it is changed have been
developed for conventional debuggers, particularly in
microcontroller applications where memory is small
enough to be viewed in its entirety. More novel
visualisations also exist, such as Tierra, an artificial
life simulation where code evolves in a Darwinian
competition which can only be appreciated when
viewed as such, or Core War (Fig. 3), a game
where player/programmers write code which fight
over memory address space.

Live coding has the unique opportunity to visualise
the movement of an underlying process while it is
being formed. This helps an audience appreciate
a live coding performance in a more meaningful
way – as it bridges the gap between an abstract
description of a process (the code) and process
itself (the generated pattern of movement through
memory). Betablocker (Fig. 4) is a raw visualisation
of an imaginary 8-bit processor operating in 256
bytes of memory. This brightly coloured live coding
environment is operated by writing assembly code
with a gamepad. The processes are visualised
while they operate on the memory addresses and
trigger sound events. Processes are able to modify
themselves and each other, resulting in highly
dynamic relationships which are challenging to
control.

A more traditional method of programming is em-
ployed in Scheme Bricks (Fig. 6), a geometric in-
terface for constructing Scheme programs. Scheme

vv < <
2
^ v<

v1<?>3v4
^ ^

> >?> ?>5^
v v

v9<?>7v6
v v<
8

. > > ^
^<

Figure 1: A pseudo-random number generator written in
the two-dimensional language Befunge.

Figure 2: Source code written in the Piet language with
two dimensional, colour syntax. Prints out the text “Hello,
world!”. Image c© Thomas Schoch 2006. Used under the
Creative Commons BY-SA 2.5 license.

Figure 3: Core war runtime display, showing visualisation
of process memory shared between the players

3



Visualisation of Live Code -
McLean • Griffiths • Collins • Wiggins

Figure 4: A live edit in the Betablocker environment,
selecting an instruction from a wheel of possibilities.

Figure 5: The robots of Al-Jazari, each with a thought
bubble containing a program, live coded with a gamepad.

Figure 6: SchemeBricks, a lisp environment using colour
instead of parenthesis, and flashes as a cue for control
flow.

Figure 7: A section of a Daisy Chain program.

Bricks takes advantage of the isomorphism of code
and data in the Scheme programming language, and
is inspired by the Scratch language designed for use
by children (Resnick et al. 2009). Scheme Bricks
allows you to drag, drop and plug together programs
rather than typing. This has some potential side
effects; in a performance situation, it is impossible to
have a mismatched parenthesis error, as is common
in other lisp-like languages. It is quicker to change
the overall structure of the program as sections
can be removed and reinserted easily by drag/drop
actions. Unwanted sections are pulled out of the
program and set aside rather than being deleted,
and accumulate around the program as ‘spare parts’
which are often later ‘recycled’ by being pulled back
into another section.

Scheme Bricks uses visual feedback to relate sound
events to the code; the instruction which triggered
a sound event flashes as the sound is played.
This minimal approach to process visualisation
makes the relationship between sound and code
structure clearer than Betablocker ’s more complete
visualisation, and is useful for the performer to
immediately locate the code generating a particular
sound event.

Daisy Chain (Fig. 7) is an attempt to embrace
less rigid structures while maintaining enough
of a computational basis to qualify as a live
coding performance. It follows a processing system
based on Petri nets (Petri 1966), where executable
instruction tokens move around a directed graph.
Daisy Chain programs create and modify the graph
topologies that they inhabit, producing sounds
as a side effect of the computation. The look
of the performance was designed to be as far
from conventional programming as possible, hand
animated flowers and drawn instruction symbols
moving around graphs constrained by spring
models.

4



Visualisation of Live Code - McLean • Griffiths • Collins • Wiggins

The nodes of a Daisy Chain graph have a fixed
lifetime, which was introduced in order to counter
a common problem with live coding where the
audience watching and performer concentrating on
programming tend to perceive time differently. Daisy
Chain prevents musical structures from persisting
too long, keeping the performance moving forward
at a rate the performer can control beforehand.

3.2. Computation in game worlds

Code has a long tradition of use in games as
a gameplay mechanic, an early example being
Core War developed in the mid 1980s and
discussed above in §3.1. More recent games such
as Carnage Heart and Marionette Handler are
mainstream games for the Playstation which employ
programming environments using icons. These
programs are used to control robots which battle it
out in large virtual arenas. Popular game titles such
as Little Big Planet allow the player to construct
machines as part of game worlds, complex enough
to support Turing complete computation. Kodu, a
research project at Microsoft goes even further, as
an end-user games programming environment on
the XBox.

Al-Jazari is a deliberate attempt to fuse games
and live coding performances. It was designed
to use a similar visual process to BetaBlocker,
but this time mediated through the actions of
robotic agents moving around a 3D world, triggering
sounds as they do so (Fig. 5). The use of visual
agents following commands rather than abstract
processes is intended to make the performance
more immediately understandable for the audience.
Al Jazari has been expanded as an art installation,
audience participatory performance and recently as
a facebook game - with the aim to increase the
accessibility of live coding to the point where anyone
can become a live coder.

4. CONCLUSION

Visualisation is central to live coding. In this article,
we have confronted how code is perceived by
performers and audiences, and in what ways visual
elements contribute to the primary syntax and
semantics of a programming language meant for live
coding. Consideration of visual elements of code
have also become essential as live coding has
formed the basis of virtual game worlds. We have
introduced a number of novel systems, presented
here as explorations of these themes. Visualisation
of live code however remains under-investigated
in terms of the psychology of programming; while
Blackwell and Collins (2005) lead the way into HCI,
evaluation protocols are yet to be adapted and

applied to experience of live coded performances.
This is however fertile ground for practice based
research, and we anticipate the changing shapes of
code over time, a codeomorphology at timescales
from individual performances to lifetimes of artistic
and technological development.

5. REFERENCES

Blackwell, A. and Collins, N. (2005). The
programming language as a musical instrument. In
Proceedings of PPIG05. University of Sussex.
Cascone, K. (2003). Grain, sequence, system (three
levels of reception in the performance of laptop
music). In Kleiner, M. S. and Szepanski, A., editors,
Soundcultures. Suhrkamp.
Collins, N., McLean, A., Rohrhuber, J., and Ward,
A. (2003). Live coding in laptop performance.
Organised Sound, 8(03):321–330.
Gallardo, D., Julià, C. F., and Jordà, S. (2008).
Turtan: a tangible programming language for creative
exploration. In Third annual IEEE international
workshop on horizontal human-computer systems
(TABLETOP).
Gärdenfors, P. (2000). Conceptual Spaces: The
Geometry of Thought. The MIT Press.
Jordà, S., Geiger, G., Alonso, M., and Kaltenbrunner,
M. (2007). The reactable: Exploring the synergy
between live music performance and tabletop
tangible interfaces. In Proc. Intl. Conf. Tangible and
Embedded Interaction (TEI07).
Landy, L. (2007). Understanding the Art of Sound
Organization. The MIT Press.
Petri, C. A. (1966). Communication with automata.
Technical report, Applied Data Research Inc.
Puckette, M. (1988). The patcher. In Proceedings
of International Computer Music Conference.
Resnick, M., Maloney, J., Hernández, A. M.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., and Kafai,
Y. (2009). Scratch: programming for all. Commun.
ACM, 52(11):60–67.
Wang, G. and Cook, P. R. (2004). On-the-fly
programming: using code as an expressive musical
instrument. In NIME ’04: Proceedings of the
2004 conference on New interfaces for musical
expression, pages 138–143, Singapore, Singapore.
National University of Singapore.
Ward, A., Rohrhuber, J., Olofsson, F., McLean, A.,
Griffiths, D., Collins, N., and Alexander, A. (2004).
Live algorithm programming and a temporary
organisation for its promotion. In Goriunova, O. and
Shulgin, A., editors, read me — Software Art and
Cultures.

5


