
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gctr20

Download by: [185.24.14.3] Date: 18 December 2017, At: 01:30

Contemporary Theatre Review

ISSN: 1048-6801 (Print) 1477-2264 (Online) Journal homepage: http://www.tandfonline.com/loi/gctr20

Sound Choreography <> Body Code: Software
Deployment and Notational Engagement without
Trace

Kate Sicchio & Alex McLean

To cite this article: Kate Sicchio & Alex McLean (2017) Sound Choreography <> Body Code:
Software Deployment and Notational Engagement without Trace, Contemporary Theatre Review,
27:3, 405-410, DOI: 10.1080/10486801.2017.1343244

To link to this article: https://doi.org/10.1080/10486801.2017.1343244

Published online: 03 Nov 2017.

Submit your article to this journal

Article views: 87

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gctr20
http://www.tandfonline.com/loi/gctr20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10486801.2017.1343244
https://doi.org/10.1080/10486801.2017.1343244
http://www.tandfonline.com/action/authorSubmission?journalCode=gctr20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gctr20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10486801.2017.1343244
http://www.tandfonline.com/doi/mlt/10.1080/10486801.2017.1343244
http://crossmark.crossref.org/dialog/?doi=10.1080/10486801.2017.1343244&domain=pdf&date_stamp=2017-11-03
http://crossmark.crossref.org/dialog/?doi=10.1080/10486801.2017.1343244&domain=pdf&date_stamp=2017-11-03

Sound Choreography <> Body Code: Software
Deployment and Notational Engagement
without Trace

Kate Sicchio and Alex McLean

Computer programs describe interwoven systems of
data flows and organising processes. These flows and
structures are generally hidden, but computer pro-
grammers conceptualise them as mental imagery
through their work and it is possible to visualise
them through technologies including visual pro-
gramming languages.1 This leads us to consider the
writing of both software source code and choreo-
graphic scores as organisational practice, and look for
ways of connecting them by linking together their
different notational systems through technology.

A number of choreographers have developed, and
to some extent formalised, their own notational sys-
tems, discussed by Rudolph Laban, Scott
deLahunta, and Kate Sicchio, and systems that use
scores to produce live works.2 These notations have

practical aims of supporting the composition of new
choreography, or documentation and analysis of a
performance, but have in the process brought code
and choreography closer together, making their cor-
respondences and differences visible. More recent
projects have introduced digital technology to sup-
port the creation of movement and dance works
during composition and rehearsal sessions, including
the Software for Dancers project3 and the collabora-
tions between Marc Downing, Nick Rothwell, and
Wayne McGregor in the Becoming artificial intelli-
gence agent.4 William Forsythe’s company’s colla-
boration with Ohio State University Synchronous
Objects and its follow-on project Motion Bank, sit
somewhere between an archive of scores and anno-
tated videos of choreography, and the use of move-
ment to create digital artworks.5

Live coding practice is distinctive for manipulat-
ing code ‘on the fly’, where code is created and

For material which compliments this article please also see Kate
Sicchio and Alex McLean’s contribution to the the journal’s
Interventions website: ‘Sound Choreographer <> Body Code’
<https://www.contemporarytheatrereview.org/2017/kate-sic
chio-and-alex-mclean>.
1. Marian Petre and Alan Blackwell, ‘Mental Imagery in Program

Design and Visual Programming’, International Journal of
Human–Computer Studies, 51 (1999), 7–30.

2. See Rudolph Laban, Laban’s Principles of Dance and
Movement Notation, 2nd edn (London: MacDonald and
Evans, 1975); Scott deLahunta, ‘The Choreographic
Resource: Technologies for Understanding Dance’, Contact
Quarterly, Chapbook 1, 35.2 (Summer 2010), 18–27; Scott
deLahunta, Software for Dancers: The Users Guide (2002)
<http://www.sdela.dds.nl/sfd/scott.html> [accessed 6 June
2016]; and Kate Sicchio, ‘Hacking Choreography: Dance and
Live Coding’, Computer Music Journal, 38.1 (2014), 31–39.

3. Software for Dancers (2002) was a project facilitated by Scott
deLahunta, bringing together software engineers and chor-
eographers to develop tools for the choreographic process.

4. Becoming is an artificial intelligence agent that animates 3D
drawings used within the rehearsal process for dancers to
respond to and improvise movement with. Marc Downie,
Nick Rothwell, and Wayne McGregor, ‘Becoming’, Wellcome
Trust Exhibition, London, 3 October 2013.

5. See William Forsythe, ‘Choreographic Objects’, Synchronous
Objects (2009) <http://synchronousobjects.osu.edu/media/
inside.php?p=essay> [accessed 6 June 2016]; and ‘Motion
Bank’ (2013) <http://motionbank.org/en> [accessed 6 June
2016].

Contemporary Theatre Review, 2017
Vol. 27, No. 3, 405–410, https://doi.org/10.1080/10486801.2017.1343244

© 2017 Informa UK Limited, trading as Taylor & Francis Group

C
T
R

D
O
C
U
M
E
N
T
S

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

https://www.contemporarytheatrereview.org/2017/kate-sicchio-and-alex-mclean
https://www.contemporarytheatrereview.org/2017/kate-sicchio-and-alex-mclean
http://www.sdela.dds.nl/sfd/scott.html
http://synchronousobjects.osu.edu/media/inside.php?p=essay
http://synchronousobjects.osu.edu/media/inside.php?p=essay
http://motionbank.org/en
http://www.tandfonline.com

developed during a performance, and often made
visible to the audience via video projection of the
coder’s screen.6 Crucially, the process continually
interprets the code while it is edited, so that the
code becomes a live user interface. Typical live
coding performances involve a human as the pro-
grammer, and a computer as interpreter. However,
live coding is a set of techniques that may be applied
to any time-based work, including choreography. In
live choreography the tables are turned somewhat,
in that the code is not generally interpreted by an
electronic computer, but by a human dancer. To
support discussion in the present article, we coin the
term code-score, which refers to any symbolic nota-
tion of rules constraining or guiding a live, impro-
vised performance, whether it is followed by an
electronic computer or a human.

Through the following, we will focus on live
code-scores which are themselves created or mod-
ified during performance. Work bringing live cod-
ing and choreography together has become an
active topic over the past few years, developed
through the work of Nick Collins and Teresa
Prima, Kate Sicchio, and Shelly Knotts and
Konstantinos Vasilakos.7 These works have
explored different approaches to changing code-
scores during their performance; for example,
Collins and Prima employed a chalkboard to change
the performer’s instructions and the others include
the use of programming languages and projected
screens.

Collaborations between live coding and chor-
eography may work to highlight the deployment
of notation and scoring, transform choreographic
work into new formats such as digital animation,
or provide fuel for improvisational experiments
within a rehearsal setting. The interpretation of a
code-score is open to varying degrees of engage-
ment, and heavily dependent on whether a
human or machine takes the role of interpreter.
Our own work explores both human and machine
interpretation in the same piece, providing
ground to explore the different ways that human
bodies and computational processes can become
intertwined in a notational system. Our approach
connects two code-scores, one musical and the
other choreographic, influencing each other
through sound and body.

Sound Choreography <> Body Code

Sound Choreography <> Body Code follows two
strands of individual research: by Sicchio on the
relationship between choreography and technology,
and by McLean on designing programming lan-
guages for expression in live performance. To
achieve confluence between them, we needed to
engage aesthetic and technical aspects on both
sides, finding balance. The solution we arrived at,
and so far deployed through five performances,
maintains a clear distinction between choreogra-
phy/dance and code/music, but connects them
via their notations. As a result, the music is not
coded for the dancer, and the dancer does not
move to the music; but still a feedback loop is
created that encompasses body and code, via
audio signal processing on one side and computer
vision on the other.

The piece begins with both performers simulta-
neously creating live action, and projections of both
code-scores within the performance space. A dia-
grammatic code-score is displayed for interpretation
by the dancer (Sicchio), which at first consists of a
small number of instructions (right, left, up, down,
loop, if) and numbers (one till three), which are
automatically connected to form a network (as the
minimum spanning tree) (see Image 1).8 The dan-
cer chooses a set series of gestures, which she then
organises and performs in response to how the
instructions and numbers are connected. The
instructions continually move in response to sound
events, where each instruction responds to a parti-
cular part of the audio frequency spectrum, causing
the spanning tree to be continually recalculated. As
the performance progresses, these movements are
amplified, and additional instructions are added so
that the diagram becomes increasingly complex and
fluid. The number of instructions and amount of
movement is graphed in the background of the
code-score, as ‘intensity’ and ‘change’ respectively,
using polar coordinates. Both increase over time on
this set incremental pattern, which peaks at a point
where the dancer is completely overwhelmed. The
diagram then returns back to a simpler form to end
the performance. Because the reconfigurations are
triggered by the instructions moving in response to
sound, the diagram responds to the sound that
McLean produces via his own code-score. This
score is deployed computationally, with6. Nick Collins and others, ‘Live Coding in Laptop

Performance’, Organised Sound, 8.3 (2003), 321–30.
7. See Nick Collins, ‘Live Coding of Consequence’, Leonardo,

44.3 (2011), 207–11; Sicchio, ‘Hacking Choreography’; and
Shelly Knotts and Kostantinos Vasilakos, ‘Agonyart’,
YouTube, 16 May 2013 <https://www.youtube.com/watch?
v=2Pk1nmIAoQs/> [accessed 6 June 2016].

8. The minimum spanning tree is the most efficient way of
connecting a set of points with paths between them.

406

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

https://www.youtube.com/watch?v=2Pk1nmIAoQs/
https://www.youtube.com/watch?v=2Pk1nmIAoQs/

engagement from both performers that will change
that score.

The movement vocabulary within the piece is
gestural and limited to a small set of simple move-
ments that are repeated throughout the perfor-
mance. The dancer decides upon these before
each performance, which might include raising
one arm, lunges, falling to the floor, and circling
both arms. There is a pedestrian quality to the
movement and it is very much situated in a post-
modern dance cannon, almost as a homage to per-
formance scores from that era of dance. The limited
vocabulary of movements helps the dancer focus on
following the notation, but also allows the audience
to follow the patterns and transformations of the
choreography as the piece progresses: this way a
trace may emerge.

In Sound Choreography <> Body Code (SC<>BC),
the movement of the dancer is tracked by a
Microsoft Kinect sensor via the Isadora software,
to detect the location and shape of the dancer’s
body in space. These data are then sent via the
network protocol Open Sound Control (OSC) to
Texture (see Image 2), an experimental, visual pro-
gramming environment, and used to move a

function within the code.9 This motion tracking
not only helps to facilitate the feedback loop, but
also provides one of the two points of contact
between the movement and the sound. So the
movement of the dancer changes the code, and
the sound produced by the live coding changes
the dance score.

The Texture programming environment is visual
in a stronger sense than in conventional visual pro-
gramming languages.10 In particular, its syntax is
based on Euclidean distance, whereas in many
other visual systems such as Max/MSP or
PureData the programmer makes connections
between functions manually. As the function
assigned to Sicchio’s position on stage moves
around McLean’s screen it interferes with and dis-
rupts the syntax tree of the running code. Because
of the strict nature of Texture’s underlying system,
the resulting program is always syntactically correct.

Image 1 The Sound Choreographer, showing instructions right, left, up, down, and numbers, connected in a minimum
spanning tree. The line extending from the central point sweeps through a single cycle during the performance, and the shapes
outlined in red and purple show ‘intensity’ and ‘change’ respectively, graphed over time using polar coordinates. ‘Intensity’
gives the number of instructions, and ‘change’ the size of each movement that is made in response to sound onsets.

9. Alex McLean and Geraint Wiggins, ‘Texture: Visual Notation
for the LiveCoding of Pattern’, Proceedings of the International
Computer Music Conference, 2011, pp. 612–28.

10. A visual programming language is one which uses visual
elements in its presentation or syntax, other than plain text.

407
C
T
R

D
O
C
U
M
E
N
T
S

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

In practice, this means that the program is rarely
disrupted to the point that it falls silent.

The second point of contact between the chor-
eography and code is via audio processing, as we
have already described; the Sound Choreography
software performs onset detection on the sound
produced from Texture. The words within the
choreographic score move in response to the
sound, resulting in connections switching between
words in the spanning tree. In this sense, the chor-
eographic structure is dancing more directly to the
rhythm of the sound than the human dancer.

In SC<>BC, the technology has become instru-
mental in associating the two different practices into
a coherent composition. During a previous colla-
boration by the authors, both performers were
focused on their individual scores, creating a co-
located rather than combined performance. In
these previous improvised works, Sicchio had not
noticed developments in the sound as she was per-
forming her code-score, and likewise McLean had
been too focused on his code-score to focus on her
movements, let alone the influence of his sound
upon them. In SC<>BC, the technology intervenes,
becoming a choreographer organising interaction
between the performers, who are otherwise unable
to sense and respond to each other. The technology
links the feedback loop, bringing bodily movement
into the code of the sound on one side, and the
sound into the movement of the code on the other.
As the piece develops the feedback loop begins to
bring elements of uncertainty into the system and
allows for the connection to feel as improvised as
the creation of the sound and the movement.

Choreography is a time-based organisational pro-
cess that may be set, improvised, scored, or notated.
Within SC<>BC, the dance score becomes an active
form of programming, and the human dancer the

interpreter. The human body is an interpreter per-
forming the machine-generated code. However,
embodied human thought processes interpret code
and engage and deploy movement in very different
ways than a computer. The human has agency, and
so is able to make decisions about the code and how
to deploy it within the timespan of the perfor-
mance. For example, when performing a section of
the score that links loop, four, and right, the dancer
might perform a gesture with the right arm four
times while facing away from the audience.
However, if they turn and face the audience, the
right could be read by the audience as left and the
dancer may respond by changing the arm they are
moving. The dancer-interpreter does not have
direct control over the code, but is able to reflect
upon, define, and redefine the semantic meaning of
it, deciding upon the meaning of the words through
the bodily process of interpreting them.

The nature of time in this process is also key. The
choreographic code-score is changing in real-time
based upon the sound, meaning that the dancer’s
decisions are improvised, instantaneous reactions.
While the code-score is computer-generated it is
executed by a human, and therefore a personal inter-
pretation of the code is performed. The process of
reading, interpreting and performing is interrelated
in each moment and the work becomes as much a
cognitive awareness exercise as it is a physical one.
The audience may also engage with these thought
processes as the code-score is projected within the
piece, allowing them to see the score change, and the
dancer respond. This ephemeral approach implies
that code may exist as a momentary trace, rather
than a fixed notation. Code may fade away just as
quickly as a trace made by moving the body.

The choreographic code-score grows in complexity
over time, becoming more complicated than a human

Image 2 The visual programming environment Texture. Words are automatically connected (and re-connected) based on
proximity and type compatibility.

408

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

dancer can perform. By the end section of SC<>BC the
dancer will always fail to follow the code-score as it is
written. They must make a decision on how to follow
and interpret fragments of the score, because there is
too much, changing too quickly. This highlights both
the different quality and scales of operation between
human and machine interpreter, and the human
agency to make decisions about the score. A human
can embrace failure and redefine the situation to con-
tinue beyond it, rather than stopping with an error
message, at least until claimed by physical exhaustion.

There is an analogous relationship in the live
coding of the sound; the more movement the dan-
cer performs, the more the code for the sound is
disrupted by the function within Texture. Within
the performance, changes to the musical code-score
are made not only on the accord of the live coder
but also in response to the dancer’s movement. The
human programmer is then forced to abandon any
sense of planning and control, and just work to
influence the code-score that is in a state of flux.

Conclusion

As an improvisatory work with a notation that is
written and then discarded during the piece itself,
SC<>BC leaves no trace but in memory. The system

is deployed in two parts, which engage with one
another through mutual intervention within a feed-
back loop, and it is through this live process of
engagement that the running system generates
and becomes the work. SC<>BC involves software
at its core, but in a sense is itself a piece of software:
it is a system incorporating both human and com-
puter actors, with an outcome that only becomes
apparent through performance. We can therefore
borrow the notion of deployment that is common
amongst software engineers, namely, the point at
which a system is placed ‘in the wild’. This is where
imagination meets reality, and indeed, where the
work has the opportunity to border at the seams
between imagination and reality and potentially
affect both.

SC<>BC engages two sides; two practices
(music, dance), two notations (musical, choreo-
graphic), two bodies (live coder, dancer) in
mutual influence; the dancer’s body interfering
with the musician’s sonic notation, and the live
coder’s sound interfering with the dancer’s chor-
eographic notation. This creates a feedback loop
which passes through dancer, computer vision,
live code, sound, machine listening, choreogra-
phy, and back to the dancer, but the coder sits
outside the loop, their body apparently disen-
gaged apart from a fixed gaze into their laptop,
and their typing fingers (see Image 3). The aim

Image 3 Photo from March 2014 performance at Site Gallery, Sheffield, UK. Photograph by Susanne Palzer.

409
C
T
R

D
O
C
U
M
E
N
T
S

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

of this technological engagement is to create
balance between the two practices, however in
this sense the piece has not fully met this aim,
and it seems that further development is needed
to bring the programmer’s body into the feed-
back loop too.

The choreographic and sonic notations are key
to SC<>BC, but themselves only exist for the
duration of the performance, the arc following

the building up and taking apart of the code-
scores, leaving no tangible trace. This is live
notation, a kairotic practice,11 which by its nat-
ure responds to the work as it unfolds, the nota-
tion depending on the notated and vice-versa. In
this sense we can follow a line through the work,
but as it leaves no trace behind, the notations
hold no meaning outside of a particular
performance.

11. Emma Cocker, ‘Live Notation: Reflections on a Kairotic
Practice’, Performance Research, 18.5 (2014), 69–76.

410

D
ow

nl
oa

de
d

by
 [

18
5.

24
.1

4.
3]

 a
t 0

1:
30

 1
8

D
ec

em
be

r
20

17

	Sound Choreography <> Body Code
	Conclusion

