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Abstract We examine Gärdenfors’ theory of conceptual
spaces, a geometrical form of knowledge representation
(Gärdenfors 2000), in the context of the general Creative
Systems Framework introduced by Wiggins (2006a, b).
Gärdenfors’ theory offers a way of bridging the traditional
divide between symbolic and sub-symbolic representations,
as well as the gap between representational formalism and
meaning as perceived by human minds. We discuss how
both these qualities may be advantageous from the point of
view of artificial creative systems. We take music as our ex-
ample domain, and discuss how a range of musical qualities
may be instantiated as conceptual spaces, and present a de-
tailed conceptual space formalisation of musical metre.

Keywords Conceptual Spaces · Creativity · Search ·
Geometry ·Musical Rhythm · Similarity

Introduction

In this paper, we examine the relationship between the
Creative Systems Framework (CSF), formalised by Wig-
gins (2006a, b) from the more abstract ideas of Boden
(2004, 1998), and the theory of Conceptual Spaces proposed
by Gärdenfors (2000). Such a comparison is interesting for
two reasons: first, Gärdenfors’ theory (which addresses gen-
eral cognition and meaning, rather than creativity) is a good
candidate to instantiate some of the abstractions in Boden’s
theory, and, second, it allows us to extend that theory with a
relatively well-defined (though not uncontroversial) notion
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of semantics and thence to apply it in real creative contexts.
This may allow us to address some of the difficult questions
surrounding the creation of meaning in computational cre-
ativity; further, an important aspect of Gärdenfors’ theory
is that it yields empirically testable predictions—a valuable
step forward in rigour for the field. We will also involve re-
cent work by Thornton (2007) in our study, which will ad-
mit what Gärdenfors calls relational concepts (Gärdenfors
2000, p. 92) into the CSF, allowing the reasoning of which
the CSF is capable to extend beyond abstractions of objec-
tive concepts into the world of relations. We will base a de-
tailed example on the work of Justin London (2004), on mu-
sical rhythm.

We begin by introducing the theories involved in the
study, and then discuss how they fit together. As an ini-
tial example, we outline the conceptualisation of musical
melody using existing methods of description to show that
the framework gives an intuitively reasonable account. We
then give a more detailed, novel application of the concep-
tualisation of musical metre. This yields a formal theory of
metrical similarity which is amenable to empirical study.

We conclude that the unification of these theories of con-
ceptual space has considerable potential for future develop-
ment of creative systems and for scientific understanding of
human cognition.

Sources and Background

Boden’s Creative Mind

The Creative Mind (Boden 2004) has attained an almost bib-
lical status in the field of computational creativity, despite
having its critics (Haase 1995; Lustig 1995; Perkins 1995;
Ram et al. 1995; Schank and Foster 1995; Turner 1995).
It has been summarised elsewhere (Wiggins 2006a), and
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therefore we focus here on precisely the points that are rele-
vant to the current study, referring the reader to the original
for a fuller story. We focus on Boden’s theory because it
takes a modern and more formal approach to cognitive sci-
ence, as compared with the earlier theories of Wallas (1926),
Koestler (1964) and Guilford (1967). As such, it is more
directly amenable to implementation, and in any case may
well encompass the more cognitive-mechanistic aspects of
the older theories1; it is these aspects that interest us here.

Boden’s key notion is of a conceptual space, inhabited
by concepts related to a particular topic; since there are
many possible topics, there are many conceptual spaces. Bo-
den presents her concepts as essentially generated (Thorn-
ton 2007), but does not specify a generation mechanism,
other than naming it exploration of the space; in conse-
quence, the idea has been compared with traditional AI state
space search, though it is not the same (Wiggins 2006b).
It does, however, stand in a clear AI tradition of knowl-
edge representation, and can be instantiated with any one
of a range of standard AI methods, such as frames. Bo-
den does not present her space as having intrinsic proper-
ties: it is merely a collection of related ideas, grouped to-
gether so as to allow reasoning about them. However, rea-
soning about concepts and their relation with the conceptual
space is not meaningful in Boden’s formulation, because
there is nowhere for concepts to exist, but within their con-
ceptual space. Notwithstanding this, Boden introduces the
notion of transformational creativity, where the space itself
is changed, corresponding with a redefinition of the topic
with which the conceptual space was associated.

Important in Boden’s theory is a notion of evaluation
(Boden 1998). This is the process whereby the quality of a
creation is measured; membership of the conceptual space
certifies the nature of the creation, while quality measures
whether it is any good—which, of course, begs an appropri-
ate criterion of quality. This distinction allows us to identify
something as, for example, a joke, while separately deciding
whether or not it is funny.

To simplify our exposition, we note the equivalence be-
tween a quasi-Platonic universe of all possible concepts (in-
cluding partial ones), traversed by an appropriate procedure,
and meaningful structures, constructed from building blocks
by an appropriate procedure; the same duality exists in state
space search. In what follows, we will take the former view,
which is more readily amenable to mathematical formula-
tion.

1 For example, Boden’s combinatorial creativity seems to coincide
precisely with Koestler’s bisociation of matrices. On the other hand,
while Guilford’s descriptions of divergent and convergent thinking may
evidently be applicable within a framework such as that which Boden
provides, they are necessarily vague descriptions of the high-level be-
haviour of a very complex system—sufficiently high-level not to be
helpful in actually defining it.

Finally, it is worth precluding a misunderstanding,
which we have encountered in several contexts, of Bo-
den’s proposal of exploratory creativity. A common argu-
ment against that proposal is that regular systematic explo-
ration is not creativity at all, but merely enumeration and
selection. The argument is that such enumeration and selec-
tion does not match with the notion of “inspiration” which
is so heavily intertwined with the Romantic (and present-
day) conception of creativity. This argument misses a signif-
icant point, however: the sensation of “inspiration” is caused
when a human creator becomes conscious of his or her new
idea. Now, not all brain/mind activity is accessible to con-
sciousness at all times, and linguistic creativity (of the small
kind involved in generating sentences of everyday speech)
has been shown to begin ahead of conscious awareness of
the resulting utterance (Carota et al. 2009). So one possible
mapping from Boden’s stated theory onto the mind would
be such that exploratory mechanisms operate at a level in-
accessible to consciousness, with an evaluation mechanism
acting as the trigger to attract conscious attention, thus pro-
ducing the sensation of “inspiration”. Therefore, it is a rea-
sonable proposition that even a mechanism as naı̈ve as unin-
formed search might be operating on a non-conscious level,
with its outputs becoming available to consciousness only
on completion, and therefore appearing to be original in-
sight or inspiration to the person experiencing it. It follows
that such naı̈ve mechanisms cannot be casually ruled out as
“obviously incorrect”. A corollary of this is that we cannot
make the appropriate distinction in a creative system with-
out a functional model of consciousness, such as Global
Workspace Theory (Baars 1988)—and completion of such
a model is probably some way off.

In summary, Boden’s theory still provides the most
general—but also most strongly grounded—framework for
discussing the issues, especially when formalised as dis-
cussed in the next section.

Wiggins’ Creative Systems Framework

Wiggins (2006a, b) defines the Creative Systems Framework
(CSF) for describing and reasoning about creative systems,
based upon the work of Boden (2004). The CSF defines a
creative system as “a collection of processes, natural or au-
tomatic, which are capable of achieving or simulating be-
haviour which in humans would be deemed creative” (Wig-
gins 2006a, p. 451). The CSF specifies seven key symbols
and functions, shown in Table 1. Given these, we can define
Boden’s conceptual space:

C A conceptual space, a set of concepts selected
by [[R]](U )

Using the CSF, it can be shown that Boden’s transforma-
tional creativity (Boden 2004) is in fact the same process
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Table 1: The symbols and concepts of the Creative Systems
Framework (Wiggins 2006a)

U The universe of all possible concepts
L A language in which to express the elements of U and

functions and predications over them
R Rules defining valid concepts, expressed in L
[[.]] An interpreter for L ; given a rule set, returns a function

which evaluates the degree to which the rules are true of
a concept

T A traversal strategy for stepping between concepts
within U

E Rules which evaluate the quality or desirability of a con-
cept

〈〈., ., .〉〉 An interpreter for L , returning a function which maps
the three rule sets, R, T , E . to a function which operates
upon an ordered subset of U (to which it has random
access) and outputs another ordered subset of U .

as exploratory creativity, but at a meta-level with respect to
the creative system; that is to say, it is exploratory creativ-
ity in the conceptual space of conceptual spaces (Wiggins
2006a). This yields a more parsimonious theory, and raises
interesting questions about other possible meta-levels, not
yet considered.

A key difference between the CSF and Boden’s theory is
the inclusion of a traversal mechanism, expressed as a set of
traversal rules, T , which may refer to the definition of the
conceptual space, R, and the evaluation rules, E , with an in-
terpreter 〈〈., ., .〉〉, to apply them. Creative systems search for
valued concepts by iteratively applying 〈〈R,T ,E 〉〉 over an
ordered set of (possibly partial) concepts. Given a C with E -
valued but as yet undiscovered concepts, the success of the
system depends on the ability of T to navigate the space.
However, a crucial feature of the CSF, which broadens Bo-
den’s conceptualisation, is that creative search is defined as
an operation over U , and not limited only to C . This al-
lows the search to lead outside C , so that application of T
can result in concepts not conforming with R. Such effects
are termed aberrations and they can invoke transformational
creativity. If an aberration contains only E -valued concepts,
it is perfect aberration and R should be transformed to in-
clude the concepts in C . If no aberrant concepts are valued,
it is pointless aberration and T should be transformed to
avoid them. If some are valued and others not, it is produc-
tive aberration and both R and T should be transformed. In
this way, a creative system is able dynamically to manipulate
its conceptual space and its manner of searching in response
to the concepts it finds.

These behaviours allow description of various different
kinds of creative behaviour, in terms of concepts. However,
they say little about the concepts themselves, and make no
attempt to structure the conceptual space beyond the implicit
structuring imposed by T . Therefore, there is no means

of distinguishing different kinds of concept—for example,
“thing” vs. “action”. Next, we summarise an approach to ad-
dressing this issue, introducing different types of concept (in
particular, concepts which are essentially relational), includ-
ing derived types.

Thornton’s Taxonomy of Concept Types

Thornton (2007) extends Boden’s conceptual space with
some notions from symbolic AI admitting a small but sig-
nificant taxonomy of concept types. Thornton takes the con-
structive view of his conceptual space, and therefore de-
scribes the construction of his concepts as either categor-
ical, where one concept is an instance of another or com-
positional, where one concept is created from a combina-
tion of others. This approach requires some primitives: there
must be basic, atomic concepts, so that the semi-lattice pro-
duced by the constructions eventually bottoms out, and there
must be relations, which instantiate the construction method
for the compositional concepts. Thornton gives an exam-
ple based on clothing: given a SHIRT, a JACKET and some
TROUSERS, each item is a GARMENT; but also, and differ-
ently, one can compose them into a UNIFORM. The former
is a categorical construction; the latter is compositional.

This example, however, is not straightforward. The con-
cept of UNIFORM is not entirely captured by the constituents
of an archetypal suit of clothes: there is an aspect of UNI-
FORM which connotes identification of the wearer as a mem-
ber of a social group; some uniforms connote authority,
some connote belief, and so on. Therefore, it seems likely
that many, if not most, useful compositional concepts will
themselves be instances of, or identical with, categorical
ones—as was so with the is-a and part-of hierarchies of
symbolic AI.

The taxonomy is further complicated by the fact that one
must allow arbitrary stacking of both kinds of relation, just
as in the older AI hierarchies, and, worse, that the relations
used in compositional concepts are themselves concepts.
The space explodes quickly, but Thornton gives a heuristic
which may help in navigating it.

The examples given in Thornton’s presentation are fun-
damentally symbolic, and he does not attempt to explain
how his basic concepts are given their meaning, nor how
their symbols might be defined; equally, consideration is not
given to concepts which consist of continuous dimensions—
the work is essentially symbolic, and the definition of the
symbols themselves is presupposed. This is not a failing of
the theory, because its contribution is on a different level
from the current proposal, but it does leave a gap to be filled,
to which we return below.

Thornton’s ideas form an important extension of Bo-
den’s theory, which can straightforwardly be formalised
within the CSF. They also match neatly (Thornton 2009)
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with aspects of the Theory of Conceptual Spaces proposed
by Gärdenfors (2000), which we introduce next.

Gärdenfors’ Conceptual Spaces

Before introducing Gärdenfors’ theory, we must defuse a
potential confusion in terminology: in the CSF, a concep-
tual space is an abstract representation of a component of
a creative system, corresponding broadly with Boden’s and
Thorton’s structure of the same name. However, such a cor-
respondence with Gärdenfors’ conceptual spaces should not
be assumed; indeed, our aim here is to explore the apparent
relationship between the two. For this section, then, the term
“conceptual space” is exclusively reserved for Gärdenfors’
ideas.

Gärdenfors (2000) argues that conceptual structures
should be represented using geometry on what he terms
the conceptual level. This level of representation is situ-
ated between the symbolic level, which includes, for ex-
ample, formal grammar, and the sub-conceptual level of
high-dimensional representations such as neural networks.
An important aspect of the theory is that these three lev-
els of representation should be understood as complemen-
tary: Gärdenfors sees his conceptual level as uniting the
other two, which are often presented in the literature as an
irreconcilable dichotomy. One interpretation of the differ-
ence between the geometrical conceptual level and the non-
symbolic sub-conceptual one may be that the basic dimen-
sions of the former (described below) are perceptually im-
mediate (in the sense that they correspond directly with ex-
perienced perception), though this is not made explicit in
Gärdenfors’ exposition.

Gärdenfors’ theory of conceptual spaces begins with
an atomic but general notion of betweenness, in terms of
which he defines similarity, represented as (not necessar-
ily Euclidean) distance. This allows models of cognitive be-
haviours (such as creative ones) to apply geometrical rea-
soning to represent, manipulate and reason about concepts.
Similarity is measured along quality dimensions, which
‘correspond to the different ways stimuli are judged to be
similar or different’ (Gärdenfors 2000, p. 6). An archetypal
example is a colour space with the dimensions hue, satu-
ration (or chromaticism), and brightness. Each quality di-
mension has a particular geometrical, topological or ordi-
nal structure. For example, hue is circular, whereas bright-
ness and saturation correspond with measured points along
finite linear scales. Identifying the characteristics of a di-
mension allow meaningful relationships between points to
be derived, and it is important to note that the values on a di-
mension need not be numbers—though how an appropriate
algebra is then defined is not discussed.

Quality dimensions may be grouped into domains. A do-
main is a set of integral (as opposed to separable) dimen-

sions, meaning that no perceptually-meaningful value can
be chosen in one dimension without every other dimension
in the domain being defined. Therefore, hue, saturation, and
brightness in the colour model, above, form a single domain.
It follows that Gärdenfors’ definition of a conceptual space
is simply ‘a collection of one or more domains’ (Gärdenfors
2000, p. 26). Another example, more relevant to the current
work, is musical PITCH, which seems to form a two dimen-
sional domain, one dimension, pitch height, being linear,
and the other, chroma (broadly, note name), being circular
(Shepard 1982).

Since the quality dimensions originate in betweenness,
similarity is directly related to proximity, though not neces-
sarily Euclidean proximity. Such spatial representations nat-
urally afford reasoning in terms of spatial regions. For ex-
ample, in the domain of COLOUR, one can identify a region
that corresponds with the RED. Boundaries between regions
are fluid, an aspect of the representation that may be usefully
exploited by creative systems searching for new interpreta-
tions of familiar concepts. Similarly, there are various ways
to tune musical scales: the pitch of a note can be moved a
surprising distance from its perceptual centroid before it be-
comes a different note (and so we can sing “out of tune”).

Gärdenfors identifies various types of regions with dif-
fering topological characteristics. Convex regions allow us
to define natural properties:

CRITERION P A natural property is a convex region of a
domain in a conceptual space. (Gärdenfors 2000, p. 71)

Again taking the example of RED in the domain of colour:
given any two shades of RED, any shade between would also
be RED. Therefore, the region corresponding to RED must be
convex. These convex regions in conceptual domains can be
closely related to basic human perceptual experience. The
same is true of PITCH: there is a region (and therefore con-
cept) for each note of the Western chromatic scale, and each
region is convex, though allowing variation at the bound-
aries, depending on context. A C\ is very close to a C] in
the context of purely scalic comparison: the two are directly
next to each other on the spiral produced by the integral con-
straints of the domain’s two dimensions.

For straightforward domains such as COLOUR and
PITCH, we can think of concepts as natural properties. How-
ever, more complex concepts exist, over multiple domains.
In music, the TONALITY domain, for example, is more
problematic: its various regions are composed of different
regions of PITCH linked together around a distinguished
PITCH region corresponding with tonal centre; it is very hard
to see how such a structure could be convex. In this context,
a D\ (two chromatic notes away from C\) is sometimes—
but not always, depending on tonal centre—much closer to
a C\ than is C]. To admit these more complex structures,
Gärdenfors defines a natural concept as follows:
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CRITERION C A natural concept is represented as a set
of regions in a number of domains together with an as-
signment of salience weights to the domains and infor-
mation about how the regions in different domains are
correlated. (Gärdenfors 2000, p. 105)

Our interpretation of Criterion C is that a natural concept is
a set of one or more natural properties and salience weights
for the dimensions.

Gärdenfors’ conceptual spaces, then, are hierarchical:
they are constructed from primitives, using geometrical no-
tions, the constructs that inhabit them are typed, and they can
be viewed either as constructed or as Platonic, in the same
sense as Thornton’s concepts. Included in the hierarchy are
higher-order, structured concepts (for example, shapes made
from more than one other shape), and even truth-functional
predicates such as “longer than”, and it is shown how all
these can be represented geometrically (Gärdenfors 2007).
It is not clear how non-perceptual concepts (such as truth
itself) would be conceptualised; perhaps such concepts ex-
ist at the symbolic level only. At its other end, the hierarchy
bottoms out via properties into quality dimensions.

The theory also has a semantic component. Taking a
strictly cognitivist stance, Gärdenfors argues that the gen-
eration (or the experience?) of semantics is strictly a prop-
erty of mind/brains, and resists the notion that words have
their own semantics. This position is perhaps reconcilable
with the more common usage of “semantics” in linguistics
if we allow that “the semantics of word W is S” is shorthand
for “word W is a symbol which stimulates the experience of
semantics S in the mind of the listener”; but in any case,
semantics is in the mind, not in the world. This leads us
to an understanding of the relationship between language,
the symbolic level of Gärdenfors’ theory and the seman-
tics of the symbols in each in terms of conceptual spaces:
words denote symbolic-level structures which are in corre-
spondence with conceptual-level regions. It is not clear if
this is Gärdenfors’s intention: the issue is not addressed di-
rectly in the primary statement of the theory (Gärdenfors
2000), where the symbolic level seems almost to serve as a
direct proxy for language. However, semantic grounding in
the theory clearly arises from the quality dimensions, which
correspond directly with perceptual mechanisms; thus, se-
mantics is fundamentally grounded in perception of the
world, as one might expect, with higher-level meaning be-
ing constructed from primitives. Below this and beyond the
scope of the current discussion, the higher-dimensional sub-
conceptual level models wetware implementation.

Two approaches to the mathematical formalisation of
Gärdenfors’ theory of conceptual spaces appear in the lit-
erature, both building on an initial formalisation by Ais-
bett and Gibbon (2001). One strand of research, based on
fuzzy set theory, is presented in detail by Rickard et al.
(2007a), drawing on previous work by Rickard (2006) and

Rickard et al. (2007b). Another strand, employing vector
spaces, is presented by Raubal (2004), with subsequent re-
lated work by Schwering and Raubal (2005a, b) and Raubal
(2008a, b). Here, we follow a similar approach to Raubal’s
vector spaces formalisation. However, we have aimed to
simply the mathematics as far as possible, by encoding only
the minimal structures needed for the operation of the the-
ory, and leaving pure nomenclature unstated.

Semantic distance between concepts is determined by
calculating the distance between points in the space. As
a rule of thumb, Gärdenfors suggests Euclidean distance
is appropriate for integral dimensions, while the city-block
metric is appropriate for separable dimensions (Gärdenfors
2000, pp. 24–26).

A prerequisite for the calculation of meaningful dis-
tances between concepts is the normalisation of the qual-
ity dimensions; the operation defines an appropriate map-
ping from a dimension’s range, to the range [0,1]. So called
min-max normalisation (Jain et al. 2005) can be appropri-
ate where values are uniformly distributed over the dimen-
sion. However, otherwise, for example, when the bulk of the
distribution is concentrated within a narrow range, min-max
normalisation can result in poor discrimination between the
most typically occurring values. Therefore, any decision on
the propriety of a normalisation method should be informed
by knowledge about the distribution of values in that di-
mension. An overview of normalisation techniques is pro-
vided by Jain et al. (2005). We use the technique of distribu-
tional distance, investigated in detail for computational mu-
sic analysis by Müllensiefen (2009), whereby distance is de-
fined in terms of a cumulative distribution function describ-
ing the distribution of values across the dimension. Distance
is simply defined as the absolute difference between the cu-
mulative distribution values corresponding to the individual
values of the dimension. For two values, xi and x j, in quality
dimension c, the distributional distance is thus:

d(xi,x j) = |Fc(xi)−Fc(x j)|, (1.1)

where Fc(x) is the appropriate continuous, or discrete, cu-
mulative distribution function.

Distributional distance has the property of maximis-
ing the discrimination between values that occur most fre-
quently. The psychological rationale for adopting this ap-
proach is that, through exposure, we become most attuned
to detecting differences between stimuli that occur most fre-
quently.

Towards a unified theory of conceptual space

Relationships between the theories

We now explore the relationship between the theories out-
lined in Section . We contend that Thornton’s theory is lo-



6

cated on Gärdenfors’ top, symbolic level, while Boden’s en-
compasses all levels but does not distinguish between them.
Wiggins’ CSF was originally motivated primarily at the
symbolic level, but lends itself naturally to operation at the
conceptual level as well. Thus, the CSF gives us a theoret-
ical structure within which we can unify Thornton’s theory
of explicit creative construction with Gärdenfors’ theory of
conceptual cognition and semantics, perhaps fulfilling Bo-
den’s original conception more completely than before.

To distinguish the different uses of “conceptual space”,
we introduce the following superscripts, to differentiate be-
tween Gärdenfors’ three levels of representation:

s Symbolic level
c Conceptual level
sc Sub-conceptual level

Each suffix may be applied to a CSF set symbol in order to
make explicit reference to elements of the CSF at a particu-
lar level of representation. For example, a subset of symbol-
ically represented concepts in a conceptual space C would
be denoted by C s, and the rules specifying this subset be-
ing denoted by Rs. The ability to refer explicitly to layers
of representation with different representational properties
helps clarify the situation where multiple levels of represen-
tation are simultaneously available, and used, in C . The me-
tre space defined in our application, below, is one such.

To begin with the self-evident: Thornton’s symbolic,
constructive approach can be modelled in the CSF, at the
symbolic level, by inclusion of appropriate symbols to ex-
press the various relations involved in the language L s, in
which the creative system is expressed. Those relations can
be made explicit in whatever T s works over C s, and used in
its reasoning. Whether we view the production of concepts
as construction of new things, or traversal of a Platonically
extant space of possibilities is immaterial, as before.

The next component is newly explicit: a mapping, M ,
between concept symbols in C s and concept regions in C c.
It is worth noting here that we would expect this mapping,
though partial, to be one-to-one, since (we suggest) C s con-
tains concepts and not words, so ambiguity would be rep-
resentationally pathological. M gives the symbols in C s

semantics in terms of the implicit perceptual semantics of
C c—and not vice versa, as might be expected in a symbolic
AI formulation, where symbols are primary, serving as prox-
ies for their own interpretation by the user.

An example of this relationship can be given using
the colour space introduced earlier. C s contains the con-
cept RED, which is a symbol. It has several instances (in
Thornton’s terminology), including SCARLET, CRIMSON

and VERMILION, each linked in C s by the INSTANCE re-
lation. Each one of these symbolic instances is mapped by
M to a different convex region of C c, though the boundary
between them may be fuzzy (Rickard 2006); and M maps
RED, the more general categorically defined concept, to a

larger region which contains all the instance regions. The
relation in C c corresponding with INSTANCE in C s is geo-
metrical inclusion, which comes as no surprise to the reader
familiar with description logics (Brachman and Levesque
1985). At the more complicated level of natural concepts,
the concept of CHORD can be captured as a combination of
regions in PITCH, and then related to TONALITY by the addi-
tion of a tonal centre, as before. Here, however, mere inclu-
sion is not the generalisation method, because simply taking
the union of all the regions so defined would yield the entire
domain. More research is required here: models such as that
of Chew (2000) may help.

It is important to note that M is not absolute, and may
vary across individuals. For example, language influences
the development of perceptual categories (Roberson et al.
2006), and at this fundamental level, there are no concepts
other than perceptual categories. Therefore, people from dif-
ferent cultures, at least, may have different C s, with corre-
spondingly different C c and M , with correspondingly dif-
ferent linguistic distinctions, although some commonality
will presumably co-exist at some level.

It seems, then, that Gärdenfors’ conceptual level com-
fortably fits directly underneath the AI-style symbolic con-
ceptual space, with M anchoring the meaning of concepts
in C s to the concepts in C c which, according to Gärdenfors,
have their own intrinsic perceptual semantics.

Since we now have a two-layer conceptual space, we
must ask what happens to the other CSF components at
the new C c level. First, we have a new language, L c, in
which the space of concepts is represented and manipulated.
Gärdenfors allows for a unified, multidimensional space en-
compassing all quality dimensions, by the device of allow-
ing each dimension an undefined value, and we take this
approach too, maximising uniformity of the formalism and
straightforwardly admitting the set U as the conceptual
space generated by all possible quality dimensions, which
seems to correspond with Gärdenfors’ most general usage
of “conceptual space”.

The nature of Rc, the rule set defining each concep-
tual space, is of particular interest. The introduction of basic
perceptual concepts, such as colour, seems to require, sim-
ply, that Rc selects a region of the relevant domain, such as
RED, which is more or less fixed, and amenable only to ex-
ploration, and not transformation. On levels involving more
complex structure, however, transformation becomes possi-
ble, at least in principle. We return to this issue below.

Traversal rules, T c, need to be formulated, and, because
the conceptual level is different in kind from the symbolic,
its traversal rules are likely to be different in kind also. For
example, in the conceptual space of colour, the idea of light-
ening a colour is hard to express in C s, because it is a con-
tinuous notion and C s is by definition discrete, so transition
in C s is necessarily by step. But in C c of colour, lightening



7

(which is itself a relational concept) is simply vector addi-
tion, and so can be trivially applied. This raises the interest-
ing question of whether and when a new symbol should be
added to C s (“I have created a new colour which I will think
of as. . . ”2), since that new colour was always implicitly ex-
tant in C c. Thus, the multi-layer C yields new detail of
transformational creativity: transformations may perhaps be
in one or other space, or in both; in turn, new kinds of aber-
ration (Wiggins 2006a) are potentially available. In general,
then, the geometrical nature of C c may afford transitions
which were not available in symbolic C s, and vice versa.
Here, the theory models reality neatly: the symbolic level
seems to model categorical perception appropriately, while
maintaining an explanatory account of the phenomenon at
the conceptual level.

A very interesting possibility, given the geometrical na-
ture of C c, is to view traversal of the space as the produc-
tion of an optimised trajectory; this is commensurate with
the AI search view. However, the geometrical nature of the
space admits the possibility of optimising this trajectory
with methods more powerful than mere search. An example
of the kind of traversal strategy one might use is given by
Wiggins et al. (2009), where C s is a set of melodic note se-
quences, and C c is defined in terms of pitch and time spaces
(as we illustrate below). Because R is supplied by a statis-
tical model, in this work, Metropolis sampling can be used
(MacKay 1998).

Evaluation rules, E c, perhaps become more accessible,
since C c affords a similarity metric. Maybe this can become
a component of a theory of aesthetics, since it is at least
known that familiarity (with what is already known, or, in
our terms, conceptualised) drives aspects of preference (Za-
jonc 1968). Furthermore, a similarity metric over C s may,
in future, be derived from the combination of C c and M .

Transformational creativity in the geometrical C c is in-
teresting. We have already noted the duality between, on
one hand, the notion of a symbolic level space which is
constructed during traversal, and, on the other, one which
is notionally Platonically extant, from which components
are merely selected during traversal. Since Gärdenfors’ ge-
ometrical spaces are in some sense more clearly Platoni-
cally extant than Boden’s conceptual ones, on account of
their strongly and regularly mathematical nature, we must
ask whether it makes sense to think of constructing one in
a way analogous to Thornton’s symbolic construction. We
must also ask whether there can in fact be a notion equiv-
alent to Boden’s transformation of such a space3, the point

2 Photoshop users evidently do this all the time: there is a tool for
sampling the colour of a region, which allows the user to refer to “the
colour of that region” without having a name for it. “The colour of that
region” is, however, as much a symbolic concept as taupe, turquoise or
turnip.

3 It is clear that geometrical transformations can change the nature
of the space itself, perhaps rendering it non-Euclidean or changing the

being that the dimensions of the space are universal (in the
same sense as Wiggins’ universe, U ) so there is nowhere
for them to be transformed to. The definition of a new con-
cept in C c consists in the identification of a new, bounded
convex region; and since that region (like all the others) is
continuous, and defined in terms of betweenness, that act of
definition has much more of the flavour of labelling some-
thing already existing than of creating something new. How-
ever, this is perhaps unsurprising. Notwithstanding graphic
designers’ rhetoric, it is hard to see how one can create a
new colour—rather, the creativity involved in such an act is
in the selection of a new region of colour space, and perhaps
in the choice of a name for it; or, more positively, the creativ-
ity may be personal to the individual (Boden’s P-creativity)
in that they have imagined a colour they have never seen
before, and then perhaps mixed it, using paint. So, if we
would not expect transformational creativity at this percep-
tual level, perhaps transformation of C c would consist in
transformation of the vector space defined by the quality di-
mensions themselves: perhaps the transformation from HSL
colour space to RGB or CMYK (Raubal 2004) is a trans-
formational creativity step, since it allows new things to be
done with colour (displaying and printing, respectively, as
opposed to seeing). To find stronger, more transformational
creativity, it seems likely that we will need to search in the
higher-level, relational concepts introduced in the more ad-
vanced parts of Gärdenfors’ theory, and since those parts
are still developing, a good intermediate strategy may be to
locate transformational creativity as primarily a symbolic-
level operation.

Nevertheless, Gärdenfors seems to have supplied all the
components needed to instantiate the conceptual space in
the CSF, and also to enrich the possibilities gained there-
from. On balance, it seems likely that we still need the sym-
bolic level for combinations of perceptual concepts which
are themselves more abstract than perceptual. To extend
Thornton’s uniform example: even if it is possible to rep-
resent the concepts of the physical objects SHIRT, JACKET

and TROUSERS and their physical function, such as keeping
warm, geometrically, it is still very hard to see how one can
naturally represent the social function of these objects (pre-
cluding nudity, enhancing appearance, etc.) in the same way.
When we begin to consider the highly abstract concept of
UNIFORM, which is defined compositionally (in Thornton’s
sense) but also in terms of a social function which is not a
function of the physical objects independently, and which is
primarily a predication of the wearer, we begin to see that an
abstract symbolic layer, albeit partly grounded in the cogni-
tive semantics of C c, is still strictly necessary. Therefore our
mapping, M , will not cover the whole of both levels, C s and

magnitude of its dimensions, but this, in our understanding, is not the
same kind of transformation as Boden’s transformational creativity,
which involves a change in the content of C s.
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C c, with the consequence that there must also be a direct re-
lationship, possibly via other layers, between C s and C sc,
the sub-conceptual level, so that the symbolic layer can be
directly implemented in wetware where appropriate.

While Gärdenfors strives to represent more external-
world semantics in his geometrical system (Gärdenfors
2007), it is perhaps worth considering a compromise, in
which a creative system works at both the conceptual and
the symbolic levels simultaneously, but synchronised and
constrained by M . Having the semantic information em-
bedded under the symbolic structure of the knowledge rep-
resentation is likely to enhance the process of creative and
inductive inference, and may contribute to the discovery of
more highly valued artifacts. In more advanced creative rea-
soning, metaphor is likely to figure strongly: many mathe-
maticians report diagrammatic visualisation when they rea-
son, and perhaps this can be characterised as a metaphorical
mapping from C s to C c, based on Gärdenfors’ own theoreti-
cal approach to metaphor (Gärdenfors 2000, §5.4); however,
we leave this can of worms on the shelf, for the moment.

Illustration: musical pitch and melody

By way of example, we outline how a C c representation of
musical tonal melody might be imagined in Gärdenfors’ way
of thinking, while maintaining symbolic conceptual repre-
sentation in C s. Common terminology from Western mu-
sic theory gives clues to the key symbolic concepts; and it
has been shown elsewhere how a machine learning system
can be used to simulate a process of creative composition
in these terms (Wiggins et al. 2009). In our example, we ig-
nore the quality dimension(s) associated with timbre (Caclin
et al. 2006), which is currently not tractable, though we do
not claim that this omission is musically adequate. It is, how-
ever, a useful feature of the Gärdenfors’ conceptual spaces
that one can neatly project out certain quality dimensions on
which one wishes to focus.

We need just pitch and time to represent melodies in a
cognitively realistic way (Wiggins et al. 1989); here, we will
use metrical time, and thus filter out expressive aspects of
performance. First, the sensation of pitch, as mentioned ear-
lier, which, for the simplest representation of melody, can
be viewed as a purely linear structure, modelled as a lin-
ear Abelian group. Each note of the standard Western scale
corresponds with a segment of the one-dimensional concep-
tual space thus formed, with a centroid of each region at
the accurately-tuned value for each note. The conceptual
space of metrical time is substantially more complicated,
and we consider it in detail below, but for the current ex-
ample, we need only its basic group properties, which al-
low us to represent perceived sequence and inter-onset in-
terval (IOI: the time between successive note beginnings) in
in terms of (possibly low-integer-fractional) multiples of a

consistent pulse (the tactus). These four quality dimensions
fuse into one integral natural concept of NOTE. Music theory
gives a name, and therefore a symbolic concept, to each and
every one of these components, and for each valid value on
each quality dimension.

Notes, though, are not enough to represent the experi-
ence of melody. For one thing, melodies can be shifted in
pitch without changing their basic identity. For another, the
relationships between consecutive notes in a melody define
their harmonic function in the context of a scale. Both of
these properties are enjoyed by a representation based not
on pitch, but on pitch-difference or, in musical terms, inter-
val, coupled with the notion of tonal centre, to which we
return below. The conceptual space of MELODIC INTERVAL

is, in Gärdenfors’ terms, a relational one, in two senses: first,
there must be a first note and second note (so a sequence re-
lation is involved); and, second, there is a quality dimension,
pitch interval, which corresponds exactly with distances be-
tween pairs of points on the pitch dimension, and so is also
relational. A natural representation of a melody, given these
quality dimensions, is as a sequence of intervals, paired with
a sequence of IOIs. Again, music theory names each of these
atomic concepts, and each value on each implicated quality
dimension.

Given such a representation, we can abstract further,
to notions such as melodic contour, where we replace the
pitch intervals with magnitudeless indicators of direction
(up, same, or down); contour has been shown empirically
to be significantly implicated in melodic memory (Dowl-
ing 1978). Interestingly, at this point, traditional music the-
ory ceases to supply terminology4, presumably because the
concepts have become too imprecise to be useful in prac-
tical discussion between musicians, notwithstanding their
perceptual import: it is left to compilers of music reference
books to construct a specialist notation, which seems to be
used mostly in the context of database indexing (Parsons
1975; Lemström and Wiggins 2009).

At a level of representation which is in some sense fur-
ther from the absolute notes, there is the level of harmonic
function. Each tonal melody has a tonal centre (usually its
last note, but in any case normally deducible from at most
the first three or four notes), and each note in the scale,
and each interval experienced in context of the tonal centre,
has a different harmonic function—each harmonic function
sounds different from the others in a way which is utterly
inexplicable in other perceptual terms5. Arguably, it is these
harmonic functions in sequence, and not the actual pitches,

4 While “up” and “down” are standard terminology, sequences of
them are not.

5 For a tutorial on the difference between major and minor tonality,
listen to “Ev’ry Time We Say Goodbye” by Cole Porter: the perceptual
experience of tonal function is available to every listener, even if he or
she has not studied music theory, nor become consciously aware of the
differences in sound so produced.
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that give the melody its character. Here we see a strongly
relational concept (relating PITCH and/or MELODIC INTER-
VAL with TONAL CENTRE, which is itself strongly related
to the circular dimension of PITCH mentioned above), that
is also strongly perceptual, and that some theorists would
argue contributes directly to any semantics music may con-
vey. Again, music theory has terms and concepts for each
quality dimension of harmonic function, and for each stan-
dard value on it. An open, perhaps unanswerable, question is
that of whether an untrained listener, capable of perceiving
harmonic function, but not of identifying it or its compo-
nents, has those concepts at the symbolic level. Our position
is negative: such symbolic-level concepts would be created
by the act of identifying the functions in question (either as
perceptual experiences or as theoretical constructs). Thus,
concept-formation per se is potentially a weak kind of cre-
ativity, as one might expect.

In the context of musical creativity, only one of the
above representations can be said to admit creation in it-
self. For example, the use of a non-standard pitch would be
seen by a musician as exactly that, and not as the creation
of a new pitch: it might be a creative selection in context
of a melody, but the pitch itself would be seen as already
extant (even if it were of a precise frequency never before
used in any musical culture); equally, new time-divisions
would be considered creative only in context. The clearly
distinguished level at which one begins to exhibit music-
compositional creativity is that of the sequences of notes or
intervals mentioned above. It is at this level only, where one
is not merely choosing a point in conceptual space bounded
by given quality dimensions, but choosing a point that con-
forms to subtle and complex external constraints, which are
evidently learned and culturally constructed, that we can
make a clear distinction between, on one hand, an Rc which
selects exactly a natural concept (e.g., RED6) and, on the
other, an Rc which selects a domain (in Gärdenfors’ terms),
from which a more specific concept may be chosen (by its
own Rc): as the concept of MELODY is chosen from within
the domain of NOTE SEQUENCES. There are points in the do-
main constructed by these quality dimensions which do not
conform to the constraints required of a tonal melody: for
example, certain notes and certain intervals are precluded
by the tonal centre; and melodies are expected to end on one
of three particular scale notes—indeed, usually, the tonal
centre itself. This region is certainly not convex, for there
are holes in it. And here, finally, is a justification for Rc, a
CSF rule set which defines a Boden-style conceptual space
of melody as a region of the larger Gärdenfors-style quality-
dimensional domain of note sequences. Here, perhaps, is the

6 In Gärdenfors’ terms, this is a natural property, too, but since we
are considering it, here, in its own right, and not as part of a more com-
plicated concept, of something which might have RED as a property,
we think of it as a concept.

point at which friction between the edges of the two theories
produces the most interesting sparks: maybe the boundary
between these two kinds of conceptual space corresponds
with the elusive boundary between perceptual and cognitive
phenomena.

Summary

In this section, we have attempted to show, at a discursive
level, how Gärdenfors’ theory of conceptual spaces may in-
stantiate Wiggins’ Creative Systems Framework, and extend
it in useful ways. Drawing the two theories together has
led us to examine each in new light. Gärdenfors’ theory, in
particular, yields many interesting questions when thus dis-
sected, which we have attempted to highlight along the way.

A fully unified theory of conceptual space offers the field
of computational creativity several advantages: a coherent,
explanatory basis for modelling of Boden’s abstract speci-
fications of creative cognition; a framework which can be
implemented directly, at least in part; a means by which the
creation of semantics may be explicable; and the beginnings
of a route to explication of the mysterious evaluation rule
set, E .

In the next section, we show how a leading theory of
musical rhythm can be brought to bear in this framework
to yield a conceptual space suitable for exploration by the
methods outlined above.

Application: Musical Metre

Preamble

We now present a formalisation of Gärdenfors’ theory of
conceptual spaces (Gärdenfors 2000) in the domain of
musical metre. The primary motivation underlying this
work is the assumption that, in order for creative systems
to begin to emulate human creative behaviour, they require
rich knowledge structures comparable to those of their
human counterparts. Inevitably, this is no trivial problem,
even within very confined domains. We conjecture that
perceptual groundedness is one of the most important
aspects for any representation over which a creative agent
operates. The importance of similarity in mental processing
is long established (Shepard 1987), and is the guiding
principle underlying the computational theory proposed
here. In short, representations that afford efficient and
flexible manipulation of concept similarities may prove
useful in the pursuit of machine simulated creativity.

Music, and art in general, are interesting application
domains in which to investigate Gärdenfors’ theory of
conceptual spaces, not least because of the primacy of
subjective experience within them. Music is notoriously
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difficult to describe with language, although humans have
very little difficulty distinguishing between music and
non-music when heard. Music exists over time, and there is
a delicate interplay between what has gone before, and what
might come next (Pearce and Wiggins 2006). Furthermore,
all musical experiences are shaped by past musical experi-
ences. In principle, the theory of conceptual spaces seems
to offer a viable approach for representing such fluid, yet
richly structured, phenomena. Below, we address questions
concerning relational and temporal concepts, and draw from
work carried out in the field of music psychology in order
to define a perceptually grounded representation of some
very basic musical concepts.

In principle, an approach to the representation of music
based on conceptual spaces should not need to be confined
to any one specific conceptualisation of music. In fact, the
conceptual spaces theory itself supports an elegant model of
learning, which accords with evolutionary views of musical
development (Bown and Wiggins 2009), in which the pro-
cess of developing understanding of unfamiliar concepts is
modelled by extending a conceptual space with additional
quality dimensions, affording greater discrimination be-
tween novel stimuli. Furthermore, the notion of dimensional
salience, modelled by weightings associated with each qual-
ity dimension, allows for the possibility of adapting con-
ceptual spaces to take into account individual musical back-
grounds and experience. Therefore, it is assumed that differ-
ing conceptualisations of music, such as those evident across
Western classical or pop music, Balkan folk music, or Gha-
nian drumming (Patel 2008, pp. 97–99), can be represented
consistently within the conceptual spaces theory.

Our primary reference is Justin London’s authoritative
account of musical metre (London 2004). London provides
a detailed theory of musical time, drawing together a range
of insights from music theory, musicology, and psychol-
ogy. Importantly, the theory offers considerable generality
as a result of its foundation upon basic human perceptual
and physiological constraints, and provides many examples
from both Western and non-Western musical traditions. Of
course, the experience of music as a whole is primarily de-
pendent on cultural context, and as such can radically differ
between cultures, and between individuals within cultures.
However, at a very basic level of music conceptualisation,
such as the experience of periodicity, London argues that
commonality across many musical practices can be found.
The present computational theory similarly concentrates on
low-level musical concepts, addressing some of what might
be considered as primitives of musical conceptualisation.

Grounding in musical representation

Gärdenfors’ initial theory of conceptual spaces concentrated
primarily on tangible properties and concepts, where quality

dimensions typically relate to attributes directly available to
our sensory system, for example, the colour of apples. Al-
though musical phenomena are closely linked with physical
events in the world, which are experienced via the senses,
the experience of musical stimuli cannot be equated with
the physical stimuli itself. One consequence of this for any
representation of musical experience is the necessity for rel-
atively abstract quality dimensions—relative at least to the
dimensions required to represent tangible physical proper-
ties or concepts. Despite a long tradition within musicol-
ogy to concentrate on notationally objective musical struc-
ture, typically derived from Western notation, Gabrielsson
(1993) points out that there is very often broad agreement
between music theoretical and music psychological studies.
Therefore, much insight into music conceptualisation can
be gained from music theory, and usefully for the theory
of conceptual spaces, music theory offers a vocabulary for
distinguishing between what may be relatively abstract con-
cepts, and provides clues as to possible structures of quality
dimensions within which they may be represented—which
may then be tested empirically.

In the case of music—that is, music as perceived—the
issue of representational grounding is mediated by subjec-
tive experience, since the phenomenon itself, or any ‘ob-
jects’ which one might consider meaningful, are psycholog-
ical or cultural in nature. To be explicit, the purpose of the
representational theory pursued here should not be confused
with the representation of musical scores or of physical mu-
sical sound. In both these cases, which are sometimes con-
fusingly referred to as ‘music’, there are clear concrete ref-
erents, whose correspondence with the cognitive constructs
may not be straightforward. The aim of the following for-
malisation is precisely to capture the cognitive constructs
associated with musical experience.

Towards a conceptual space of musical time

The conceptual space described in this section captures mu-
sical metre, rather than all aspects of musical timing. A
common distinction made in the literature is between mu-
sical metre and rhythm (more generally: serial and periodic
concepts, as discussed below), although there is debate over
the extent to which they can be treated independently (Ben-
jamin 1984; Cooper and Meyer 1960; Hasty 1997). London
(2004, p. 4) defines rhythm as involving ‘patterns of dura-
tion that are phenomenally present in the music’. Duration
here refers not to note lengths, but to the inter-onset inter-
val (IOI) between successive notes. Rhythm is therefore a
theoretical construct describing the arrangement of events
in time. However, this objective description does not neces-
sarily accord with perceived musical structure.
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The perceptual counterpart to rhythm is metre:

[M]etre involves our initial perception as well as sub-
sequent anticipation of a series of beats that we ab-
stract from the rhythmic surface of the music as it
unfolds in time. In psychological terms, rhythm in-
volves the structure of the temporal stimulus, while
metre involves our perception and cognition of such
stimulus. (London 2004, p. 4)

The perception of metre can, therefore, be considered a
form of categorical perception, where the surface details of
the temporal stimuli, such as the particular structure of the
rhythmic pattern, or any expressive performance timing, are
conceptualised with reference to a hierarchical organisation
of regular beats, itself induced from the stimuli. Rhythmic
patterns also tend to be characterised by a bimodal distribu-
tion of 1:1 and 2:1 duration ratios (Clarke 1999), which typ-
ically coincide with metrical locations (thus making synco-
pation possible (Steedman 1977)) and further emphasising
the interrelatedness of the concepts of rhythm and metre.

It is also necessary to draw a distinction between the dif-
ferent timescales that operate within music. Relationships
across time may be comprehended on all levels of musical
organisation, from IOIs lasting a few hundred milliseconds,
to relationships between patterns of notes spanning entire
works. A boundary between rhythm and form is usually de-
fined as being the duration of the perceptual present: up to
about 10 seconds (Fraisse 1978; Clarke 1999). The compre-
hension of form is considered to require deliberate cognitive
effort involving long-term memory. Below we consider only
concepts that are bounded by the temporal extent of the per-
ceptual present, reserving larger-scale musical concepts for
future research.

Formalising a conceptual space of musical rhythm

A minimal conceptual space representation of rhythmic
structure would seem to require at least the ability to repre-
sent rhythmic stimuli at the level of the perception of events
in time, as well as more abstract and stable concepts, which
emerge from the event level, and persist over the extent of
the perceptual present. The lower level might be thought
of as representing cognitive primitives, which are strongly
grounded concepts, closely associated with direct sensory
experience, such as the basic perception of time intervals,
or the sensation of periodicity. As the level of abstraction
increases, conceptualisation becomes less rooted in percep-
tion, and concepts such as tempo, or grouping, may emerge,
and so on to still higher culturally specific concepts. As the
level of abstraction changes, it is assumed that the quality
dimensions of the space may also need to change, thus re-
quiring the ability to map points between alternative sets of
dimensions, as discussed by Raubal (2004). It may become

impossible to represent some concepts adequately within
quality dimensions, with symbolic representations proving
more appropriate, as discussed above. In any case, both
points and symbols representing higher level concepts can
be understood as mapping to regions of lower level concepts.
This paper focuses on lower level concepts, since the defini-
tion of the structure of this level is a prerequisite for building
representations of more abstract concepts.

Following Parncutt (1994), primitive level rhythmic con-
cepts are here divided into two classes: periodic and serial.
Periodic and serial concepts represent qualitatively distinct
sensations arising from the same physical stimulus pattern
of IOIs. For the present, we consider only periodic concepts,
which is possible by assuming an independence between the
two, as is common in the literature (Lerdahl and Jackend-
off 1983; Povel 1984; Parncutt 1994). However, perception
is known to be more stable when the boundaries of peri-
odic and serial groundings coincide, and, indeed, much of
the interest in rhythmic patterns is the result of the interac-
tion between the two (Lerdahl and Jackendoff 1983). Future
work is necessary to address the geometrical representation
of serial concepts, which present particular challenges to the
conceptual space theory due to their strictly sequential na-
ture.

Periodic concepts

Periodic concepts are essentially the building blocks of me-
tre, or ‘regular temporal structure’ (Steedman 1977, p. 555).
Metre can be defined as the grouping of perceived beats or
pulses into equivalence classes, which is typically expressed
as the ‘regular alternation of strong and weak beats’ (Ler-
dahl and Jackendoff 1983, p. 12). The basic distinction be-
tween periodic and serial concepts is that periodic concepts
depend on the ‘relative timing and perceptual properties of
nonadjacent events’ (Parncutt 1994, p. 412), rather than con-
secutive events. Metre can also be thought of as concerning
durationless points in time, whereas serial concepts inher-
ently concern the relationships between events of specific
duration (Clarke 1999, p. 478).

The periodic nature of metre means that it can be rep-
resented graphically in the form of a circle. Following the
convention developed by London (2004, p. 64–69), time
flows clockwise, and the dots on the circumference mark
peaks of attentional energy. The 12:00 position marks the
downbeat. In Fig. 1a, two levels of metric organisation are
represented—the total time-span of the cycle, or measure
period, and the intervals between the individual beats. Three
levels of metre are represented in Fig. 1b—the measure pe-
riod, the beat level, and the duple subdivision of the beat.

The total number of dots around the circumference of a
circle defines the cardinality of the metre. This cyclic com-
ponent, referred to as the N-cycle, is the lowest level (fastest
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Fig. 1: Cyclical representation of metre, after (London 2004,
pp. 64–69).

moving) cycle in any metrical hierarchy. The concept of the
N-cycle can be used as a basis for distinguishing individ-
ual metrical types (London 2004, pp. 73–75). Figure 1a is
therefore a 3-cycle metre, which in this case is an N-cycle
component that also corresponds to the beat cycle or tac-
tus. Figure 1b is a 6-cycle, which in this case corresponds
to a subdivision of the beat-cycle. It is more common for a
beat-cycle to be a subcycle of an N-cycle, because most me-
tres include at least one level of subdivision (London 2004,
p. 35). We can therefore refer to the metre represented in
Fig. 1b as a 6-cycle metre, with a 1-3-5 component. Metres
may have further levels of organisation, as shown in Fig. 1c,
which contains four levels of periodic motion, and may also
include non-isochronous cycles, as in Fig. 1d, where the beat
cycle consists of three short beats followed by one long beat.

One further piece of information is needed to specify
a metre fully within this framework: the measure period.
Specifying the total time interval of a metrical structure
determines the IOIs between the timepoints of the com-
ponent cycles, resulting in a tempo-metrical type (London
2004, pp. 76–77). Drawing on the psychological literature,
London defines the maximum period of the N-cycle as be-
tween 5 and 6 seconds, and the IOI between timepoints on
the N-cycle as at least 100 milliseconds. This range defines
the ‘temporal envelope for metre’ (London 2004, p. 27).
The range of tactus IOI is from 200 ms to 3000 ms (cor-
responding to 20–300 beats-per-minute), with a preference
around 600 ms (100 bpm). Note that these limits are not ar-
bitrary constraints, defined in order to simplify the represen-
tation of metre: they are derived from empirical perceptual
and cognitive limitations. Such quantitative understanding
of perceptual phenomena is central to our present purpose
of constructing perceptually valid conceptual space repre-
sentations.

In addition to the above constraints on the N-cycle, Lon-
don provides further constraints that apply to the internal
subcycle structure of metre. The following summarises the
set of metric well-formedness constraints (London 2004,
p. 72).

WFC 1: IOIs between time points on the N-cycle must be
nominally isochronous, and at least ≈ 100 ms.

WFC 2: All cycles must form a closed loop.
WFC 3: All cycles must have the same phase.
WFC 4: All cycles must span the same amount of time (the

measure period), which should not be greater than ≈ 5
seconds. In the formalisation below, we define the upper
limit of the measure period as 6 seconds.

WFC 5: Each subcycle must connect nonadjacent time
points on the next lowest cycle.

WFC 6: All subcycles must be maximally even (or as maxi-
mally even as possible in some non-isochronous metres).
The principle of maximal evenness requires that all time
points of a cycle be as evenly distributed as possible,
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which avoids ambiguous or pathological metrical struc-
tures (London 2004, p. 103).

The above constraints on metric well-formedness define
a large space of possible metres, which London is confi-
dent encompasses the vast majority of metres present across
all musical cultures (London 2004, p. 114). Importantly, the
constraints allow us to exclude from consideration the much
larger space of all possible hierarchical cyclic structure that
do not correspond with a subjective experience of metre. In
the following, we define a conceptual space representation
of well-formed metres.

The domain of isochronous metre

We now construct a domain of isochronous metre, fol-
lowing London’s specification, working from the bottom
up. Individual cycles may be either isochronous, or non-
isochronous. Here we will focus on isochronous cycles,
leaving non-isochronous metres for future work.

First, we define a PULSE IOI quality dimension, to repre-
sent the IOI between the isochronous time points of a cycle,
measured in milliseconds, and defined over 100–6000 ms:

PULSE IOI = {x ∈ R | 100≤ x≤ 6000}. (1.2)

We use the usual < from R to provide an order over
PULSE IOI.

The range of PULSE IOI accords with London’s defi-
nition of the temporal envelope for metre (London 2004,
p. 27), and there should be greater discrimination between
lower values of PULSE IOI than between higher values. To
achieve this, we normalise the IOI values using a distribu-
tional distance function, S, based on Parncutt’s pulse-period
salience (PPS) function, shown in (1.3) and Fig. 2a (Parncutt
1994, p. 438).

PPS = exp

{
−1

2

[
1
σ

log10

(
PULSE IOI

µ

)]2
}
. (1.3)

We set the parameter µ = 600, defining 600 ms (100 bpm)
as the most salient pulse rate. We also use the typical value
σ = 0.2, which concentrates the bulk of the distribution in
the 200–2000 ms range. SPULSE IOI is defined as the corre-
sponding cumulative distribution function, shown in Fig. 2b.
The distance between points x and y is calculated thus7:

x−PULSE IOI y = |SPULSE IOI (x)−SPULSE IOI (y)| (1.4)

where vertical bars denote absolute value.

7 We adorn functions specialised to a dimension and/or domain with
a subscript identifying that dimension. Since these dimensions are sub-
sets of infinite sets, these operations may not be everywhere defined.

Next, we define CARDINALITY, a quality dimension rep-
resenting the cardinality of a metrical cycle, defined over the
range [1..60] timepoints, where only integers are allowed:

CARDINALITY = {x ∈ Z | 1≤ x≤ 60}. (1.5)

CARDINALITY is defined to accommodate the theoretical
minimum and maximum number of timepoints that may be
present on a metrical cycle, according to the metrical well-
formedness constraints (WFCs; see above). London (2004,
pp. 68–69) employs this term principally with reference to
N-cycles; however, in order to improve the uniformity of
the resulting formalism, here the term can be applied to
metrical cycles at any level in the hierarchy. We include
1 as a degenerate case, corresponding to the measure pe-
riod. The CARDINALITY value 2 corresponds with the tac-
tus cycle of the most basic metre of alternating strong and
weak beats, with no subdivision. This metre only has two
hierarchical levels of organisation—the measure period, and
a 2-cycle beat cycle, which also corresponds with the N-
cycle. However, since it is much more common for the beat-
cycle also to contain at least one level of subdivision (Lon-
don 2004, p. 68), a value CARDINALITY < 4 is unlikely be-
cause 4 is the minimum number of time points necessary
for three levels of metrical organisation: 4-cycle (N-cycle);
2-cycle (beat-cycle); and the 1-cycle (measure period). The
maximum CARDINALITY, 60, is the theoretical maximum
number of periodic timepoints perceptible within the tem-
poral envelope of metre, derived by assuming a minimum
PULSE IOI value of 100 ms, within a maximum measure pe-
riod of 6000 ms; this tight relation between CARDINALITY

and PULSE IOI illustrates their integral nature in this con-
text. The ordering, <, on CARDINALITY is the usual one
over Z.

The simplest normalisation approach for CARDINALITY

would be min-max normalisation (Jain et al. 2005). How-
ever, a linear mapping from the range [1..60] to [0,1] presup-
poses that the perceptual notion of distance remains constant
over the range. Intuitively this is not the case, since we are
more likely to discriminate more finely between lower val-
ues of CARDINALITY, which will also typically span shorter
time periods. Furthermore, since the largest value of CARDI-
NALITY for any cycle in a metre is always the N-cycle, and
all other cycles are subsets of the N-cycle according to the
WFCs, there will necessarily be a higher density of lower
CARDINALITY values across any corpus of well formed me-
tres. Therefore, in the absence of a psychologically tested
normalisation function, a distribution-based distance mea-
sure may serve as an appropriate approximation. Ideally,
such a distribution should be derived from a corpus contain-
ing detailed and perceptually verified metrical annotation,
which unfortunately is not available to us. As an alterna-
tive, we simple scale the range logarithmically, using (1.6),
shown in Fig. 3. This simple normalisation approach per-
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Fig. 2: Distribution-based normalisation for PULSE IOI, based on Parncutt’s pulse-period salience (Parncutt 1994, p. 438).
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Fig. 3: Normalisation function for CARDINALITY.

formed adequately during subsequent empirical testing (see
Discussion section below).

SCARDINALITY(x) = 1− log(x)
log(60)

(1.6)

Calculating the distance between dimension values is de-
fined analogously to (1.4):

x−CARDINALITY y = |SCARDINALITY(x)−SCARDINALITY(y)| (1.7)

To reconstruct London’s definitions, we first require a
domain of PERIODICITY, as follows:

PERIODICITY = (PULSE IOI×CARDINALITY)∪{>} (1.8)

The value > denotes “undefined”. The ordering of PERIOD-
ICITY is defined in terms of PULSE IOI:

〈pi,ci〉<PERIODICITY 〈p j,c j〉 iff pi <PULSE IOI p j (1.9)

><PERIODICITY 〈pi,ci〉 (1.10)

where 〈pi,ci〉 ∈ PERIODICITY.
Given PERIODICITY, we construct a domain comprising

9 PERIODICITY domains, which we call L-METRE, to dis-
tinguish it from our preferred METRE representation, below,
as follows:

L-METRE = PERIODICITY×
PERIODICITY4× PERIODICITY4 (1.11)

We divide the 9 PERIODICITY domains into 3 groups of 1,
4 and 4 respectively, for notational clarity. The first, a single
domain, denotes the tactus (main beat), which must always
be defined, the first vector of 4, whose first value must al-
ways be defined, denotes metrical levels larger than the tac-
tus, higher metrical levels to the right, and the second vector,
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all of whose values may be undefined, denotes metrical lev-
els lower than the tactus, lower metrical levels to the right.
For both tactus groupings and subdivisions, 4 is the maxi-
mum number of levels possible given the metrical WFCs.
There are further constraints: in either group, moving from
left to right, undefined can only be followed by undefined;
and, again moving from left to right, each element of a group
must be a non-unity integer multiple of the previous one. Fi-
nally, there are salience weights on each dimension, but we
simplify the notation slightly by omitting these here. Thus,
L-METRE is a natural concept, because it conforms to Crite-
rion C.

Given this definition, for example, the Western metre 4
3 at

100 beats per minute (bpm), subdividing into quavers (giv-
ing a repeating group of 3 groups of 2 pulses), would be
denoted by

〈〈600,3〉,〈〈1800,1〉,>,>,>〉,〈〈300,6〉,>,>,>〉〉

while 8
6 (which has a repeating group of 2 groups of 3 pulses)

would be

〈〈600,2〉,〈〈1200,1〉,>,>,>〉,〈〈200,6〉,>,>,>〉〉

However, this representation leaves something to be desired,
because of the absolute values used. A natural way to rep-
resent these levels is relative to each other (as in the text,
above). It turns out, also, that for a natural geometrical rep-
resentation to model perception accurately, one also needs
to represent the relationships between cycles. To see this,
compare the representation of 4

3, above, with that of 4
2 and 4

4,
at the same tempo:

4
2 〈〈600,2〉,〈〈1200,1〉,>,>,>〉,〈〈300,4〉,>,>,>〉〉
4
4 〈〈600,4〉,〈〈1200,2〉,〈2400,1〉,>,>〉,〈〈300,8〉,>,>,>〉〉

We would like a Euclidean (or near-Euclidean) space for our
representation. But 4

2 is substantially closer, perceptually, to
4
4 than it is to 4

3, and any Euclidean notion of subtraction will
not work here. To solve this problem, we construct a new
dimension CARDINALITY RATIO, to represent the relation-
ship between two CARDINALITY dimensions:

CARDINALITY RATIO = {2,3}∪{>} (1.12)

The CARDINALITY RATIO value for a cycle is calculated
in terms of its containing cycle, and thus ultimately the N-
cycle, for which CARDINALITY RATIO is undefined. There-
fore, there will be one fewer defined CARDINALITY RATIO

dimensions than the number of CARDINALITY dimensions,
as illustrated by the following values for 8

12 with semi-quaver
beat subdivision:

CARDINALITY 〈24,12,4,2,1〉
CARDINALITY RATIO 〈>,2,3,2,2〉

We constrain the values of CARDINALITY RATIO to equiv-
alence classes 2 and 3, thus constraining the regions in the
resulting domain of METRE, defined below; these restricted
values are chosen following Lerdahl and Jackendoff (1983),
and so model metre in Western tonal music. The formalism
can be extended by adding further small prime numbers, as
supported by empirical data from other cultures, as neces-
sary.

Given this new dimension, we define

PERIODICITY RATIO = (PERIODICITY×
CARDINALITY RATIO)

∪{>} (1.13)

Now, a minimal conceptual space of METRE, capturing
London’s notion of periodic flow of attentional energy, can
be constructed thus, by analogy with (1.11):

METRE = PERIODICITY RATIO× PERIODICITY RATIO4×
PERIODICITY RATIO4 (1.14)

Now, we are in a position to compare values. To do so, we
must define the result of subtracting, or subtracting from,>:
this is a positive value near 0, which we write ε; however,
>−> = 0. In the new conceptual representation, the three
example duple metres discussed above are denoted as fol-
lows:

4
2 〈〈〈600,2〉,2〉,〈〈〈1200,1〉,2〉,>,>,>〉,〈〈〈300,4〉,>〉,>,>,>〉〉
4
3 〈〈〈600,3〉,2〉,〈〈〈1800,1〉,3〉,>,>,>〉,〈〈〈300,6〉,>〉,>,>,>〉〉
4
4 〈〈〈600,4〉,2〉,〈〈〈1200,2〉,2〉,〈〈2400,1〉,2〉,>,>〉,

〈〈〈300,8〉,>〉,>,>,>〉〉

The Euclidean distance between 4
2 and 4

3 is 1.02; that be-
tween 4

2 and 4
4 is
√

0.086+ ε2 (which is less than 1); and
that between 4

3 and 4
4 is
√

1.07+ ε2 (which is greater than 1).
These distances rank in the same order as the corresponding
perceptual and musicological distances.

Discussion: Isochronous metre

Equipped with the basic framework outlined above, it is
now possible to represent well-formed isochronous metres
within perceptually grounded quality dimensions. Here we
will provide examples of how various metres, common to
Western music, appear within the conceptual space, and will
also show how it is possible to calculate the distance be-
tween sets of points in the space of METRE, which corre-
sponds to a plausible notion of similarity.

Figure 4 shows two results from a series of investiga-
tions designed to visualise the semantic distances between
points in the multidimensional conceptual space of METRE.
The space of METRE comprises 27 component quality di-
mensions, organised into sub-domains; however, in practice,
many quality dimensions remain undefined. Various datasets
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were created, consisting of a variety of metres designed to
illustrate different aspects of higher-level conceptual simi-
larity. Pairwise distance matrices were calculated for each
dataset, and then projected into 2- and 3-dimensional spaces
using classic (parametric) multidimensional scaling.8 Here
we present two such examples, which demonstrate that a
plausible notion of conceptual similarity is maintained when
comparing various metres at both the same and across a
range of tempi. A full empirical study involving human sub-
jects is the only way to evaluate this computational model,
but this method provides insightful and instant feedback,
which is particularly appropriate given the exploratory na-
ture of this research.

Tactus was held constant in Fig. 4a, with the aim of visu-
alising the distances between a range of equal tempo metres
common to Western music. It is difficult to give a simple
interpretation in perceptual terms of the dimensions of this
projection; however, meaningful clusters of metres can be
observed. The space reveals two distinct regions divided by
the diagonal between the x and y axes. The region x < −y
contains compound metres (triplet subdivisions of the tactus
pulse), and x > −y contains all simple metres (duple sub-
division of the tactus). Within each region, further clusters
of metres can be observed corresponding to duple and triple
groupings of the tactus beat. Within the simple metre re-
gion, 4

2, 4
4 and 2

3 (one, two and three groups of two tactus
beats, respectively) form the duple cluster. The second clus-
ter corresponds to metres with triple tactus groupings: 4

3 and
4
6 (one and two groups of three tactus beats, respectively).
The z dimension provides further discrimination within clus-
ters, which can be interpreted as reflecting the higher level
groupings of tactus groupings. For example, 4

2 is approx-
imately equidistant from 4

4 and 2
3 on the z axis (although

is slightly closer to 4
4). 4

2 has no grouping above the tactus
grouping level, except the implicit measure period. 4

4 has a
duple grouping of tactus groups, while 2

3 has a triple group-
ing of tactus groups. Therefore, the distance between 4

4 and
2
3 is greater than the distance between 4

2 and either 4
4 or 2

3,
which accords with musicological intuition.

Figure 4b visualises how the distance between three sim-
ple metres changes over a range of different tempi. Re-
gions corresponding to the three metres are clearly evident
in the projection, with 4

2 being closer to 4
4 than 4

3, as would
be expected. The distance between individual tempi is non-
linear, which is a consequence of normalising the range of
PULSE IOI according to pulse period salience. The distance
between 80 bpm and 120 bpm here appears larger than the
distance between 120 bpm and 160 bpm, which is consis-
tent with the intuition that perceived dissimilarity should be
greater between more highly salient periodicities.

8 MDS was carried out using the cmdscale function from the R sta-
tistical package (R Development Core Team 2010)

Conclusion

Creativity is manifest across a wide range of human en-
deavour, and real progress is being made within the com-
putational creativity community to understand this seem-
ingly fundamental, yet elusive, capacity. The work of Bo-
den (2004, 1998) has become a cornerstone on which much
of this work resides, and subsequent formalisation (Wig-
gins 2006a, b) has revealed further convincing insight into
the nature of creative processes. However, many issues still
remain. In this paper we have attempted to pursue one ap-
proach to the problem of meaning within creative systems.
To this end, we have shown how a geometry-based knowl-
edge representation, as proposed by Gärdenfors (2000), can
be usefully employed within Wiggins’ (Wiggins 2006a, b)
creative systems framework, as one possibility for establish-
ing a perceptually grounded semantics.

We also discussed the relationship between Gärdenfors’
geometric representation and traditional symbolic represen-
tations from the perspective of creative systems. Gärdenfors’
theory, which is situated at the conceptual level, provides
a link between sub-symbolic and symbolic representations.
We formally defined this relationship within the CSF, and
explored some of the implications for reasoning over both
conceptual and symbolic representations. It appears that the
two levels are not only compatible, but also greatly com-
plementary. We involved Thornton’s (2007) representational
theory, which provides a means of describing relations be-
tween concepts, as a further example of how mappings be-
tween representational levels can support efficient reason-
ing.

Building on Gärdenfors’ theory of conceptual spaces,
we have attempted to construct the beginnings of a geomet-
rical formalisation of basic musical concepts. We have pro-
vided descriptive examples of a range of musical concepts,
including pitch, duration, melody and harmony, and how
they might be instantiated in a musical conceptual space.
We have also provided a detailed conceptual spaces formal-
isation of musical metre. Even with a high degree of do-
main knowledge, this problem proves far from trivial. Me-
tre is only one aspect of music’s temporal structuring, and
the specification of anything approaching a complete con-
ceptual spaces representation of ‘musical time’ is some way
off. However, progress has been made, which is an essential
first step on the road to richer levels of conceptualisation.
Given a metrical representation of the kind developed here,
we can consider how the geometry of the space can inform
the process of creative traversal, and thus perhaps build sys-
tems which are more musically creative in a more human-
like way.

Most importantly, the present work fulfils and adds to
Gärdenfors’ laudable aim of generating testable hypotheses,
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ultimately contributing to the body of evidence for or against
cognitive semantics, in the creative context.
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