
Work-in-progress preprint: Live notation for patterns of
movement
Alex McLean, Then Try This, UK and Kate Sicchio, Virginia Commonwealth University, USA

Abstract

By exploring how we might create movement through a live notational process of programming in real
time, we aim to create a live coding1 language for algorithmic choreography. Our work spans patterns,
computation, movement, notation, robotics and performance. We examine weaving, dance, and
musical forms as places of inspiration. We also develop a telematic performance where we live code
both the audience and a small robot in order to use practice as a place to further our thinking, tacit
knowledge and develop notation of ephemeral processes. We conclude by considering the
inexhaustible quality of live, language-based approaches to choreographic notation.

Introduction

Notations are by nature incomplete, often describing continuous expressions in terms of discrete,
symbolic operations. How can abstract symbols generalize gesture, with all of its nuanced timings and
qualities? This question gets to the heart of how we can notate movement. Choreography can be seen
as the organization of gestures in space and time, and yet despite well-known attempts, there is no
widely adopted choreographic notation. Acknowledging this, through our collaboration we look for
algorithmic choreographies where computer programming is brought closer to dance — where coding
and moving are connected in creative feedback. In the following we introduce our approach to the
development and performance of dance-specific live coding languages. But first, we mark out some
conceptual ground for our work, by challenging some pervasive assumptions which we believe hold the
algorithmic arts back.

Establishing dichotomies

Let's start by identifying and clarifying three pairs of concepts that have otherwise become entangled
and conflated: computation vs automation, determinism vs predictability, and sequencing vs
patterning. Once we have teased these terms apart, we will then apply them in understanding notation
as a live choreographic interface for working with patterns through non-automated computation, and
unpredictable determinism.

Computation vs automation — These two terms are too often needlessly conflated, but here we are
mainly interested in considering computation without automation. Once we separate these two terms,
we open up all the possibilities of human action-as-computation, including its long, partially hidden
history in traditional craft culture. After all, humans have always computed things, as is clearly evident
in how handcrafts such as weaving and braiding are full of algorithms for generating patterns.
Craftspeople have explored computation well before automation, and while the Jacquard device is

1 Live coding is a practice largely situated within the performing arts, where a performer creates a live work by writing code
while it is being executed.

often cited in connecting weaving with computing, handweaving has always been computational.
Jacquard's device only stands for automating the computation, thereby taking it out of human hands
(Harlizius-Klück 2017).

As well as in craft, human action-as-computation is also seen in dance and choreography, wherever
rule-based systems are used to create and perform movements of the body. A mark of this is where
simple instructions are used to generate complex choreographic movements and relationships. One
such computational approach can be found within Trisha Brown’s choreographic work Locus, which
does not involve electronic computers, but does involve a distinct system for performing movement,
through a diagrammatic cube that assigns letters in space around a dancer. A text (Brown’s biography)
is used to determine the positions of the points in space. In Locus, the focus is on spatial placement of
gestures and not the movement itself, resulting in different sections of the piece having different
movements (Sulzman 1978).

Algorithmic systems for organizing movement are common in social dance and folk traditions too, such
as European maypole dances and the comparable but more complex Tamil dance of Pinnal Kolattam. In
both cases each dancer is given instructions to follow, dancing in and out in opposing directions to
create a patterned braid around the maypole, or in the case of Pinnal Kolattam, in three-dimensional
space. The more involved the dance, the more complex the resulting braid, potentially creating
surprising interference patterns where different colors of the ribbons interact according to the
particular way that the structure is braided.

Over the past few decades, such systems-based approaches have developed in stage dance too, where
they have become collectively known as algorithmic choreography. This term is often associated with
Merce Cunningham and his use of the Dance Forms software in the 1990s (Schiphorst 1993), but this is
a late case that focuses on automation of the choreographic process through the use of computers,
rather than working with computation as a material in its own right. Choreographer Jeanne Beaman’s
earlier work from the 1960s also aimed to automate the process of the choreographer, creating dances
from chance procedures (i.e. rolling a dice) by using a computer to select movement, duration and
space from a list. The computer created “70 dances in 4 minutes” (Eacho 2021). However again, these
examples tend to view the computer as a sequencer and randomiser, automatically selecting
movements, and putting them together in new combinations, but not really computing anything. By
contrast, the maypole or Pinnal Kolattam does compute something tangible — the interference
patterns emerging from human movements being captured as potentially complex braids.

Computation in dance can be human or technology-based, bringing together processes that follow
rule-based systems to create choreography. These algorithms may be simple or complex, designing
movement through gestures, spatial patterns or timing structures. Automation, like in the case of
machine weaving, may use computation to create choreography that is then executed by movers, but
we believe that automation needs computation, more than computation needs automation.

Determinism vs predictability — A system can be both deterministic and unpredictable, in that the
results of running a process can be practically impossible to predict in advance, yet when you run the
process a second time, it produces the exact same results. Theoretically speaking, we know this from
the halting problem in computer science; there is no general procedure for telling whether a given
deterministic procedure will complete. That is, we can't always predict whether a given deterministic

https://www.zotero.org/google-docs/?Q37GYq
https://www.zotero.org/google-docs/?EwnhsY
https://www.zotero.org/google-docs/?66Tmas
https://www.zotero.org/google-docs/?hBuRw6

procedure will return an answer at all. We also know deterministic, unpredictable systems from chaos
theory, in that if we make a very slight change to a deterministic, chaotic system, it will give completely
different results.

This difference between determinism and predictability can be seen in the way that random number
generators are often used in media arts to create variation in results. These are known as
pseudo-random number generators, because they are deterministic, only giving variation by including
time and state in their calculation. They are designed to be unpredictable through the use of chaotic
interference patterns, creating deterministic sequences that exhibit the properties of noise. So they are
a good example of deterministic unpredictability. However, pseudo-random number generators are not
what we are interested in here, rather we are addressing the creative possibilities of composing
unpredictable, deterministic patterns by hand, through non-automated computation. This comes not
from work with 'black box' random number generators, which make arbitrary choices. Rather, we see
creative possibilities in hands-on experimentation with algorithmic pattern operations, for example
repetitions, symmetries, and interference patterns at multiple scales, to create unpredictable, complex
results from simple parts.

Sequencing vs patterning — The third and final dichotomy that we'd like to draw is to separate linear
sequences from patterns, despite the latter generally arising from the former. The need here is to
clarify what we really mean by pattern. This word is applied across many fields including mathematics,
arts, crafts and design, but carries a different weight and meaning in each of them, and in some cases is
even a pejorative term. For instance in music, pattern tends to stand for any repeating, discrete
sequence, and therefore patterns tend to be loved by electronic dance musicians, and derided by
'serious' classical composers (Hugill 2020). On the other hand in textiles, the word pattern may refer to
a technical procedure for a traditional craftsperson to follow, such as numerical braiding patterns
indicating the relational exchange of threads, or procedural knitting patterns where the craftsperson
follows instructions to loop, jump and switch between parts of the pattern in order to produce a
garment of the correct size. Here then, we refer to sequences as linear or step-by-step, and patterns as
more nuanced, branching and recursive procedures where symbolic elements may be repeated, but are
also transformed at different scales, and aligned and composed together to create complex results.

This dichotomy of sequencing vs pattern follows from the previous two dichotomies we drew between
computation vs automation, and determinism vs predictability. Automatism tends towards simple,
predictable step-by-step sequences, not only to make procedures easy to automate, but also to make
procedural breakdowns easier to recover from, when a human operator has to step in (Bainbridge
1983). Computation on the other hand embraces unpredictability in combining potentially simple
elements in order to produce surprising, complex forms, as we will explain next.

Complexity from simplicity

If we embrace computation and determinism, and reject automation and predictability, what are we
left to work with, in terms of creative material? Our answer is an approach that focuses on perceiving
the complex and unpredictable results of simple pattern-making processes. We use the word complex
with care, however. Where artists engage with computation, there may be an assumption that they are
doing complex, unfathomable things. We argue that this would be a failure to grasp the affordance of
computation, as a means to generate and experience complex forms from simple structures. To support

https://www.zotero.org/google-docs/?gwOHWw
https://www.zotero.org/google-docs/?mygfaI
https://www.zotero.org/google-docs/?mygfaI

this, we offer two examples; a contemporary bitfield pattern, and a heritage weaving pattern, shown
side-by-side in Figure 1.

a) Bitfield pattern, by Martin Kleppe
b) Traditional "Earl's Canvas" weaving

pattern, rendered by Denise Kovnat

Figure 1: Examples of two-dimensional algorithmic patterns

Figure 1a) shows a 'bitfield' rendering of the function (x ^ y) % 9 == 0 for each (x,y) point in
two-dimensional space.2 The ^ operator stands for a bitwise exclusive-or, and % for modulo. By aligning
the bits of two 'x' and 'y' numbers, combining them with this boolean operation, and painting the
respective pixel white where the result divides equally by 9, an interference pattern is revealed. Figure
1b) shows a similar interference pattern, but from handweaving.3 Interference is again set between x
and y directions (which weavers refer to as weft and warp respectively). This pattern arises from a
binary matrix multiplication of the binary values from the shaft loom configuration shown at the top,
the feet movements (known as treddling) shown on the right, and the connection between them
(known as the 'tie up') in the top right. The resulting weaving pattern (shown centrally in blue) shares
some visual similarities with that of the bitfield pattern on the left, despite the manner of construction
being very different. However, we should give proper respect to the far older and more developed craft
of weaving. There is much more that we could vary in the weaving block design, for example by
introducing a pattern to the selection of color across the warp and weft threads. We should also bear in
mind that this two-dimensional design represents an entanglement of threads into three dimensions, a
process which creates visual and physical properties far more complex than what is represented in two
dimensions on the screen. But still, the family resemblance between these computational crafts, one
contemporary and one ancient, is striking.

3 For discussion of this pattern, and its translation to echo threading, see
https://www.denisekovnat.com/2020/11/gebrochene-echo-and-jin-with-fiberworks.html

2 For community discussion of bitfields and related practices of bytebeat and sizecoding, see
https://forum.algorithmicpattern.org/t/bytebeat-tixyland-and-other-functions-of-time/396

https://www.denisekovnat.com/2020/11/gebrochene-echo-and-jin-with-fiberworks.html
https://forum.algorithmicpattern.org/t/bytebeat-tixyland-and-other-functions-of-time/396

Although perhaps simple, these coded patterns provide very rich ground to explore. This is the
affordance of language — instructions as parts that can be mixed together and rearranged in a
multitude of ways, as interoperable fragments that may be abstracted or recursively embedded,
creating a generative, combinatorial explosion of possibility. Its unpredictability means that every
change might feel like a step into the dark, but where the results are immediately generated, as in the
practice of live coding, each change can instead feel like switching on a light.

Having asserted our interest in computation but not automation, and deterministic procedures but not
predictability, we are better equipped to seek notations for algorithms that are for humans to follow,
through tacit, embodied engagement with movement through computation.

Histories of notating movement

Before introducing our own recent work in notating movement, we will first review related historical
and contemporary approaches, allowing us to reflect upon and bring together the different histories of
code and choreography. Let's first consider the representation of human exertion as effort. A key
reference point in the notation of effort is in the book Effort: Economy in Body Movement (Laban and
Lawrence 1947), which proposes a systematic, seemingly elegant way to categorize human efforts in
movement, through combination of elements such as time, weight, and space. This work was written
by choreographer Rudolf Laban in collaboration with management consultant F. C. Lawrence in 1947,
and as such is as applicable to time-and-motion studies in industry as it is to choreography in dance.
We should also note that Laban's earlier work was as choreographer to Hitler and Goebbels, until his
work on the 1936 Olympic games was rejected (the Nazis rejecting Laban, rather than vice-versa). It is
interesting that while this theory arose from a background of white supremacy and Fordism, it
continues to be influential in choreographic research and practice.

In South Indian Carnatic dance styles, spoken syllables are used to represent different movements,
strung together to form movement phrases or Jatis. These syllables may be written as notation to aid
memory, but the emphasis is very much on orality, with different, overlapping sets of syllables
associated with different dance styles (Seth 2017). This approach extends also to Carnatic music, where
syllables are central to the conception of rhythm, applied both to represent drumming articulations
(e.g. on the mridangam drum) or directly in vocal performance, a practice known as Konnakol. These
ancient, yet still actively developing dance traditions pose a challenge for our otherwise
Western-centric view of notation; a set of non-lexical syllables are used as symbols that represent
gestures, but in spoken rather than written form. Because our interest is in live notation, where a
written notation is transient in that it changes along with the piece it represents, this challenge is
central to our ongoing work.

One example of a live notation system in stage choreography comes from Michael Klein and Nick
Rothwell from the late 1990s. Their system Choreo/Graph provides a live score that is visible to dancers
on monitor screens at the sides of the stage. This system allows the dance to be changed in real-time
while being performed, most notably in the work Duplex (deLahunta 2002). Here a cueing system was
created that gave dancers either sequences of choreographic material or tasks to manipulate the
movement. The liveness of this notational score demonstrates a digital system for dance that changes
during the performance rather than a fully set piece created via algorithmic processes.

https://www.zotero.org/google-docs/?jopC7w
https://www.zotero.org/google-docs/?jopC7w
https://www.zotero.org/google-docs/?i4hAFo
https://www.zotero.org/google-docs/?QES1jZ

Live notation was also the name of a research network bringing live coders together with live artists4.
Both of us (the present authors) took part; the network was convened by Alex in collaboration with live
artist Hester Reeve (McLean and Reeve 2012), with Kate a core member able to bridge both disciplines
through performance practice. A far-reaching outcome of this exchange between practices came from
the recognition of a shared approach which project member Emma Cocker (2014) identified as kairotic
coding. She provided a philosophical reflection on the role of notation in live improvisation, using the
mythological figure of Penelope's unweaving as metaphor for a notation that can be unraveled and
rewritten. This prefigured later collaborative work with weaver and mathematician Ellen
Harlizius-Klück, which took the connection between live coding and weaving further, beyond metaphor
and into direct correspondence (Cocker 2017). Indeed, we have already discussed the close
correspondences between weaving and coding in the previous section.

With these examples in mind, drawing on concepts from dance notation around documenting gesture,
representing the ephemeral as in Konnakol, and live notation that changes live during performance
such as with Choreo/Graph, we began to explore how to create a programming language for live coding
movement of humans and robot performers. On this basis, we are interested in using computers for
the live generation of choreography, focused on the computational and not automating processes. We
do this through the approach of live coding, which allows for continuous decision making in both
generating and responding to algorithmic patterns. By bringing robots into the work as performers, we
look to find connections between humans and machines through language and movement, bound
together in liveness.

Live coding robotic performance

We introduce our own recent work in algorithmic choreography, as collaborators working at a distance
between Richmond US (Kate) and Sheffield UK (Alex), building upon our in-person collaborations while
previously living in the same city (Sicchio and McLean 2017). At such a distance, it was perhaps natural
to explore choreographic notation of robotic movement, and we did so using off-the-shelf ROBOTIS
components (AX12A servo motors, controlled via an Arduino interface).5 We worked with two identical
robots, one in each studio, with each robot having three servo motors, thereby providing three
'degrees of freedom' (see Fig. 2). Despite Kate's prior and ongoing work with choreographing robots
(Sicchio et al. 2022) and our earlier collaborations, we decided to come to this work afresh,
re-approaching algorithmic choreography by thinking through practice.

5 For technical information about working with ROBOTIS servo motors, see the following blog post:
https://slab.org/2022/02/28/making-robots-with-ax-12a/

4 Live Art is a fine art/performance art tradition, using live bodily action as medium.

https://www.zotero.org/google-docs/?FuFfGq
https://www.zotero.org/google-docs/?dr3TlT
https://www.zotero.org/google-docs/?7aLZKs
https://www.zotero.org/google-docs/?gZdJio
https://www.zotero.org/google-docs/?LA3pYW
https://slab.org/2022/02/28/making-robots-with-ax-12a/

Figure 2: One of our robots, created from three ROBOTIS servo motors coupled with standard fixings, creating
three degrees of freedom.

We began by triggering movements of our robots using the Strudel live coding environment for
algorithmic pattern (Roos and McLean 2023), which is a port of the TidalCycles live coding system to
the web. Despite being in different continents, we were able to work in the same editor via the Flok live
coding environment6, which is designed for network music. Flok allows multiple people to code
simultaneously within the same editor, where each participant has their own 'cursor'. When someone
triggers a live edit, the running code is automatically updated on all participating computers. Despite
being designed for making music, the combination of the Strudel javascript environment and Flok
editor worked well for patterning servo motor activity, rather than sound.

This initial configuration therefore created the following chain of action, each link having a different
bearing on the result:

Kate and Alex → Flok editor → Strudel language → Arduino microcontroller → Servo motors

6 The free/open source Flok editor for networked multi-user live coding is available at https://flok.clic.cf/

https://www.zotero.org/google-docs/?NgcXty

Being a live coding editor, the Flok system allows the creation and manipulation of code, while it runs
(Blackwell et. al. 2022). Because the development of that code forms the structure of the piece, live
coding performances tend towards progressive building up and reduction of structural complexity,
without sudden changes or shifts of mood. Although largely designed for making music, the Strudel
language is essentially a system for combining sequences and transformations, at multiple scales, in
order to generate algorithmic patterns. Its use therefore tends towards generating complex patterns
from simple parts, with fractured symmetries that at first may seem arbitrary, but through repetition an
underlying structure is revealed. So already, the live coding editor and language environment provides
affordances for us to explore.

Ceding control

We could stop here, at the notational level of the live coding environment, in framing our piece. To do
so would be to focus on the notation of movement, rather than the movement itself, and its influence
on the human choreographers. Indeed, this is how we initially approached control of our robots,
looking for ways to pinpoint a position in space using the notation, instructing each robot to move to
that position, through a technique called inverse kinematics. This extreme level of control is made
possible with robots, in that what you write on the computer, can be what you get.

On closer examination though, such an approach to notation as a technology of control7 became a
losing battle. Firstly, in our case, it is not possible for a given extremity of a robot (such as the end of its
'nose') to move to any given point — each robot only has three motors, configured as a mechanical
waist, back and head respectively, and because each base is fixed to a table such a robot can only
contort to touch certain ranges of positions within their reach. Even if the robot had freedom to reach
any point that we might want it to, we would still have to carefully consider its physical characteristics.
It takes time to move, and so to reach a particular point at a particular time, you have to start early. If
you move too fast, the robot will overshoot, and resonate back and forward until it settles to the
intended position. With servo-motors, fast movements are also extremely noisy. We found the more
we attempted to exert control over our robot through precise instruction, the more such
uncontrollable, unwanted elements had their bearing on the work. So we instead worked with the
robotic quirks as creative material, exploring these issues of vibration and timing as resonances and
rhythms that are intrinsic to the robot, offering up material affordances that we chose to embrace
rather than work against.

In order to work with any robot then, we first need to understand its physical constraints, as creative
material to work with. Indeed, this is true also of working with humans. For example percussionist Jaki
Liebziet, known as founding member of the experimental band Can, developed an approach to
drumming with a notation based on the binary dot-dash familiar to morse code (Podmore, 2020). The
constraints of this system were based on the observation that in order to perform a louder 'accented'
strike of the drum, the hand needs to move the drumstick further, up and then down, which takes
additional time. Liebziet's system therefore worked on interplay between left and right hands, where
due to the laws of physics, an accent with one hand requires time provided by a preceding double
movement with the other hand. From these simple rules, complex rhythms and paradiddles are
generated. Accordingly, rather than seeing the physical constraints of a human or robotic agent as

7 For an exploration of technologies of control, versus technologies of work, see Ursula Franklin's transcribed lectures "Real
World of Technology" (Franklin 1999).

getting in the way of an ideal notated piece, we instead take physical constraints as a starting point,
therefore providing a rich creative space in which to work. In that spirit, we turn now to focus on the
physicality of our robots.

The Robot

As mentioned earlier, we each have one robot, sitting on our respective desks in Richmond and
Sheffield, made from off-the-shelf servo motors. These motors not only allow external control over
where they travel, how fast, and with how much power, but also allow sensing of their current position,
and pressure applied to it. These physical properties of the robot present a number of constraints. For
example, it isn't possible to increase the speed of the robots without increasing the noise that it makes.
The robot also isn't able to move around or through the surface it is mounted to. More subtly, care
should also be taken to avoid overusing certain movements that wear out the components, by
overheating them, or over-stressing interconnecting wires.

Such physical properties offer us a number of choices in deciding how we interact with the robot, for
example:

a) If the robot is already moving to a position when you tell it to move to a new one, should it
complete its current move, or immediately adjust its course?

b) Should the robot simply move as quickly as possible to the new position, or should its speed
follow a particular curve of acceleration and deceleration as it reaches its goal?

c) Should a movement be expressed in terms of the average speed of movement, or in terms of
the time the movement should take?

d) Relatedly, should a movement be timed in terms of when the robot arrives at its target position,
or in terms of when the movement begins?

e) How about relative movements, like 'switch sides', or 'move halfway to the ground' — should
these movements be relative to the current target position of the moving robot, or to the
current position?

To a large extent, all of the above constraints and choices apply just as well to humans as to robotics,
with the exception that human muscles tend to move more quietly than servo motors — but human
movements have their noises too, such as gasps, squeaks, and clicks. The primary difference then is
that with robot performers, answers to such questions tend towards control, and with human ones, the
answers tend towards respecting human agency. In considering them together, we are therefore able to
make these choices explicit, and open to interrogation.

As live coding language designers, we work by defining ways of making things, via the creation of a
notation. This means that once we identify choices such as those above, we are able to defer those
choices, by turning them into an option, codified as a parameter to a computer language function. This
allows us to not only make these choices during a live performance, but change our minds, or even
write code to vary the choice over time, following its own pattern.

In our case, we took the choices that most respected the characteristics of the robots we were working
with, with the goal of finding movements as interesting choreographic material, rather than direct
instructions. This relates to what Ingold (2011) criticizes as hylomorphism, where a maker forces their
ideas on material, rather than working with material through creative feedback. For example,
considering choice e) above, if we instruct a robot to 'switch sides', it should move a servo until it

mirrors its starting position; but what if we quickly tell it to switch sides again, while it is still moving? If
we respect the imaginary world of the notation, the robot should go back to where it started, but if we
respect the physicality of the robot, the robot should switch sides relative to its current position. In the
latter case, if we keep interrupting its movements with the same 'switch sides' instruction, each
movement will be of a shorter distance until the robot settles at its center, orthogonal to the ground.
By respecting and perhaps embodying the robot in this way, we have discovered a new gesture
afforded by it, a movement that resonates and settles.

From sequencing to pattern — introducing the robot to the audience

The syntax of our language consisted of parts of the robot or body, predetermined gestures, and
spatial-temporal relations. Our robots consist of three motors, which we earlier loosely referred to as
“head”, “waist” and “back”. Through initial explorations we created a small collection of simple gestures
including “move”, “lean”, “switch”, “toggle” and “reset”. Other, higher order movements such as
“sway”, “wiggle” and “diagonaltwist” were added later, described in terms of the composition of basic
signals (e.g. sine, sawtooth and square waves, and white or perlin noise) directed to the different
motors. The distance by which the motor would move, and the duration of the movement were also
programmable for each gesture. A simple program to move the top motor of the robot to 25% of its
range over a quarter of a second would look something like this:

part("head")
.action("move")
.to(0.25)
.dur(250)
.robot()

This code could be looped, and new gestures, timings and spatial commands could be added, creating
compound movements with unique and often surprising characters. It was then quick to develop
sequences of evolving gestures through combining movements. By harnessing the expressivity of
Strudel we were not only able to sequence the movements of the robot, but start to create more
complex patterns through transformation and combination. This allows a series of gestures to be
performed and combined at different scales, allowing patterning of choice or probability.

As part of this work we presented a live coded choreographic performance at The International
Conference on Live Interfaces in June 2022, organized by conference chair Adriana Sá and CICANT at
Universidade Lusófona in Lisbon, Portugal8. During the performance Alex was in Sheffield UK and Kate
in Chicago US, both using the afore-mentioned networked Flok editor to program movement and
sound, while using video conferencing to engage with the Lisbon audience.

In this telematic performance we introduced our live notation techniques first as a score for audience
participation, only introducing our robots later in the piece. The piece began with us sharing our screen
with the audience in Lisbon, projected onto the back wall of the largely empty stage of the concert hall.
A camera was also set on the stage for us to view how the audience was moving, allowing us to live
code their gestures. Different actions were highlighted, with the instructions patterned by our code
read out loud by a text-to-speech synthesizer. These instructions were simple to begin with, for

8 Video documentation https://youtu.be/Lh8yAOT3WOM?t=2810

example "move your head thirty-five percent, over five seconds". To accompany the choreography and
audio directions, minimal, patterned musical rhythms were live coded by Alex.

We asked the audience to participate in performing these patterned movements, instructed via the
code. To facilitate this, the performance began with simple instructions, building up into a structured
sequence. But as the piece progressed, more complex movements were created, by composing the
simple sequences together and transforming them with multiple patterning functions. The audience
attempted to learn and perform the movements in real-time, as they grew in complexity. As the
audience began to struggle to keep up with the live coded choreographic instructions, we revealed an
additional window on the screen. In this square the robot was revealed to the audience for the first
time, shown following the same live coded instructions. In its particular way, the robot was able to
continue to perform the actions as instructed, through their increasing complexity.9

The interpretation of such code feels very different from human to human, compared to from human
to robot. Some people were sitting and some were standing. Some people did a gesture once and
paused, while some looped the movement over and over again. Some became single-minded in
completing the instructions even when they became more and more complex and difficult to perform
without time to break instructions down into smaller pieces. Most humans gave up, sat back and
watched as the piece progressed. However, the robot was able to take on each code change without
challenge. Its dance was not limited to its ability to keep up with the algorithmic changes in the system,
as the work progressed from sequences to patterns. While the notation remained relatively simple, it
generated a complexity that only machine movement could execute live.

But still, the human was still 'in the loop' as choreographer of the robotic movements, responding to
them by live coding. Within the narrative structure of the piece, in particular the building up of pattern,
and the reveal of the robot joining the audience in executing the code, all the instructions for
patterning movement were improvised by us as live choreographer-programmers. By placing ourselves
as humans improvising with computational movement, rather than automating movement as a
prepared script, we created and manipulated patterns throughout the piece, responding to each
subjective moment in time. While the robot may highlight differences between human and machine
performers, the live coding process demonstrates the human labor of notation, and the ways in which
we can author and guide computation through close, tacit understanding of movement.

9 We should note that the robot was more able to follow the choreography because the notation was designed specifically
for it. It would have been impossible for the robot to execute instructions designed for a human body, such as balancing or
jumping.

Figure 3: View from the audience of live coded instructions for movement, at the International
Conference on Live Interfaces, June 2022. Photo: Ricardo Geraldes.

The future of this work includes workshopping a notational system that allows for further
computational real-time notations focusing on movement for the robot as well as movement for screen
dance in addition to our human dancers. We aim to continue jumping between fleshy and robotic
movements to understand the relationship between them, and are already working to compare and
contrast efforts between human and machine expression.

Developing notation through use

Responding to our first experimental performance, we are developing the next iteration of our
notation. Our design process is now focussed on the movements of each of the individual servo-motors
as curves over time, combined into whole gestures. Rather than a goal-directed approach (such as our
initial experiment with inverse kinematics mentioned earlier), we begin with movement qualities of
each individual motor, and then progress to combine those qualities to discover whole gestures that
emerge when the three motors move together to form a gestalt, greater than the sum of its parts.
These gestures then form the basis of our choreographic vocabulary.

The aim however isn't a fixed set of gestures that are then sequenced into a piece. Performing one
gesture followed by another is one key way of combining gestures, but there are many more ways to
combine them, and then to combine those combinations. For example, because a gesture is described
as numbers changing over time, it makes sense to combine two gestures by simply adding them
together, or multiplying one by another. Or, the gestures could be segmented, and then interlaced, one

by another. These may seem like abstract operations, but are well grounded in the algorithmic
underpinnings of the long history of craft, as illustrated in our earlier examples comparing weaving and
bitfield patterns. Given suitable techniques for combining otherwise simple elements, creative ground
is opened up to explore.

We also are interested in interactions between the human choreographer/performers and the robots
within a contained performance. One way to facilitate this back and forth of movement is through the
use of sensors to detect movement from the humans and map this to the robots. We are developing
the use of accelerometers to shape both the movement of the robot during the performance, and the
underlying tempo. This might affect the overall impulse of the robot’s motion or just one of the three
motors at a time, again allowing for combinatorial actions within the robot’s choreography. This
approach provides an opportunity to explore patterned movement not only on a single robot, but as
live feedback between humans and robots.

Conclusion/Exhaustion

Ironically, automation is exhausting. As we already noted with reference to Bainbridge (1983),
automated processes must be supervised by an expert, but the usual hands-off nature of automation
means that their vigilance and expertise wanes. We have explored an alternative to automation, where
live code, as higher-order notation, is placed in the same cybernetic loop as human and/or robotic
movement. Here the code does not control the movement, but rather induces it by describing
unpredictable (yet deterministic) patterned movements. The live coder responds to those movements
by manipulating the code, to the point that the code follows from the movement, as much as the
movement follows from the code.

What code does in this configuration is make an explosion of possibilities explicit. Language is
combinational in that given a fairly small number of elements and an expressive language syntax, there
may be a very large number of possibilities in which those elements can be arranged. When these
language elements represent transformations of pattern, by combining those transformations together
we find a practically inexhaustible supply of new patterns to explore.

When we share our live code manipulations then, we are sharing a kind of collective wealth that Mark
Fisher argues that capitalism is set up to block: “Real wealth is the collective capacity to produce, care
and enjoy. […] This is Red Plenty [...] Everything for everyone. All of us first.” (Fisher 2018). We share
code, and changes to it, in exploration of the pattern that results. Anyone can take a snapshot of that
code, and make a minor adjustment to make something totally new. Scarcity is lost.

This generation of collective wealth from patterns is not new, but is the basis of much of traditional
craft. For example a textile fragment such as the bronze/iron age card-woven fragment found in the salt
mines of Hallstatt, may have a complex structure, but that structure may be 'read' to reveal the
movement-code used to construct it (Griffiths et al 2022). So here we join a wider movement to
reconnect contemporary technology with its basis in ancient craft, making that technology more open
to change as cultural expression.

Discussion of technology, craft and exhaustion brings the industrial Luddite movement to mind, and live
coders have already been compared to Luddites for valuing human craft over automation in their
practice (McLean 2017). Indeed, live coding has been characterized by Colombian psychologist Camilo
Andrés Hoyos Lozano (2022) as a technology of post-work, for its particular relationship with
automation, its free/open source ethos, and its capability to restructure rules as they are followed. Live
coder and researcher Alejandro Franco Briones (2023) sees similar possibilities for live coding in
resisting marketisation and supporting emancipation.

But still, our project to date is limited by the conventional, off-the-shelf robotic technology that we
have used, in that it is expensive, reliant on exploited labor, and reliant on supply channels made fragile
by ongoing environmental collapse and resulting health emergencies. However, there is no shortage of
electronics to be found in e-waste stockpiles, including motors. For our next steps then, we will look for
ways to apply our work to repurposed servo motors, adjusting to an open hardware approach. Or if all
else fails, we can still return to apply our notations solely to human movement.

References

Harlizius-Klück, Ellen. 2017. "Weaving as Binary Art and the Algebra of Patterns". TEXTILE 15 (2):
176–97. https://doi.org/10.1080/14759756.2017.1298239.

https://doi.org/10/fhdj8w
Blackwell, Alan F., Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson. 2022. Live Coding: A

User’s Manual. MIT Press. https://doi.org/10.7551/mitpress/13770.001.0001.
Fisher, Mark. k-punk: The Collected and Unpublished Writings of Mark Fisher (2004-2016), edited by

Darren Ambrose. London: Repeater, 2018.
Franklin, Ursula. 1999. The Real World of Technology. 2nd edition. House of Anansi Press.
Griffiths, David, Alex McLean, and Amber Griffiths. 2022. "Digital is physical & a remote tablet weaving

exploration." Then Try This. https://doi.org/10.5281/zenodo.7380868.
https://doi.org/10.1080/14759756.2017.1298239
https://andrewhugill.com/writings/Shifting%20meanings.html
Ingold, Tim. 2011. ‘The Textility of Making’. In Being Alive: Essays on Movement, Knowledge and

Description, 210–19. Routledge.
Podmore, Jono. 2020. Jaki Liebezeit: The Life, Theory and Practice of a Master Drummer. S.l.: Unbound.
Bainbridge, Lisanne. 1983. “Ironies of Automation.” Automatica 19 (6): 775–79.

https://doi.org/10/fhdj8w.
Cocker, Emma. 2014. “Live Notation - Reflections on a Kairotic Practice.” Edited by Jerome Fletcher and

Ric Allsopp. Performance Research Journal 18 (5).
———. 2017. “Weaving Codes/Coding Weaves: Penelopean Mêtis and the Weaver-Coder’s Kairos.”

TEXTILE 15 (2): 124–41. https://doi.org/10.1080/14759756.2017.1298233.
deLahunta, Scott. 2002. Duplex/ ChoreoGraph: in conversation with Barriedale Operahouse.

http://www.sdela.dds.nl/sfd/frankfin.html.
Eacho, Douglas. 2021. “Scripting Control: Computer Choreography and Neoliberal Performance.”

Theatre Journal 73 (2): 339–57.
Franco Briones, Alejandro. 2023. “Towards Another Transdiscipline: Art, Science and Emancipation as a

Promise and Provocation for Live Coding.” In . Utrecht, Netherlands: Zenodo.
https://doi.org/10.5281/zenodo.7842097.

Harlizius-Klück, Ellen. 2017. “Weaving as Binary Art and the Algebra of Patterns.” TEXTILE 15 (2):

https://www.zotero.org/google-docs/?4XvOaS
https://www.zotero.org/google-docs/?DlTMoa
https://www.zotero.org/google-docs/?EeFn8K
https://doi.org/10/fhdj8w
https://doi.org/10.7551/mitpress/13770.001.0001
https://doi.org/10.5281/zenodo.7380868
https://doi.org/10.1080/14759756.2017.1298239
https://andrewhugill.com/writings/Shifting%20meanings.html
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0

176–97. https://doi.org/10.1080/14759756.2017.1298239.
Hugill, Andrew. 2020. “Shifting Meanings: The Fate of Words in Transdisciplinary Academia.” January

2020. https://andrewhugill.com/writings/Shifting%20meanings.html.
Laban, Rudolf von, and F. C. Lawrence. 1947. Effort. Macdonald & Evans.
Lozano, Camilo Andrés Hoyos. 2022. “Critical Subjectivity in Algorave’s Post-Work Practices.” New

Sociology: Journal of Critical Praxis 3 (June). https://doi.org/10.25071/2563-3694.40.
McLean, Alex. 2017. “Lessons from the Luddites.” Furtherfield (blog). June 2, 2017.

https://www.furtherfield.org/lessons-from-the-luddites/.
McLean, Alex, and Hester Reeve. 2012. “Live Notation: Acoustic Resonance?” In Proceedings of

International Computer Music Conference, 70–75.
Roos, Felix, and Alex McLean. 2023. “Strudel: Live Coding Patterns on the Web.” In Proceedings of the

7th International Conference on Live Coding. Utrecht, Netherlands: Zenodo.
https://doi.org/10.5281/zenodo.7842142.

Schiphorst, Thecla. 1993. “A Case Study of Merce Cunningham’s Use of the LifeForms Computer
Choreographic System in the Making of Trackers.” Simon Fraser University.

Seth, RajyaLakshmi. 2017. “Oral and Written Traditions in Documentation of Dance Notation in Indian
Classical Dances.” Nehru Memorial Museum & Library.
http://www.indianculture.gov.in/research-papers/oral-and-written-traditions-documentation-d
ance-notation-indian-classical-dances.

Sicchio, Kate, Patrick Martin, Charles Dietzel, and Alicia Olivio. 2022. “Towards A Framework For
Dancing Beyond Demonstration.” In MOCO ’22: Proceedings of the 8th International Conference
on Movement and Computing. Chicago: ACM.
https://dl.acm.org/doi/10.1145/3537972.3537981.

Sicchio, Kate, and Alex McLean. 2017. “Sound Choreography <> Body Code: Software Deployment and
Notational Engagement without Trace.” Contemporary Theatre Review 27 (3): 405–10.
https://doi.org/10.1080/10486801.2017.1343244.

Sulzman, Mona. 1978. “Choice/Form in Trisha Brown’s ‘Locus’: A View from inside the Cube.” Dance
Chronicle 2 (2): 117–30. https://doi.org/10.1080/01472527808568723.

https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0
https://www.zotero.org/google-docs/?2ICpY0

