
Bricolage Programming in the Creative Arts

Alex McLean and Geraint Wiggins

Centre for Cognition, Computation and Culture
Department of Computing

Goldsmiths, University of London

Abstract. In this paper we consider artists who create their work by writing algorithms, which
when interpreted by a computer generates their plotted drawings, synthesised music, animated
digital video, or whatever target medium they have chosen. We examine the demands that such
artists place upon their environments, the relationships between concepts and algorithms, and of
cognition and computation. We begin by considering an artist’s creative process, and situating
it within the bricolage style of programming. An embodied view of bricolage programming is
related, underpinned by theories of cognitive metaphor and computational creativity, and finally
with consideration of the bricolage programmer’s relation to time.

1 Introduction

Over the last decade, computer programming has enjoyed a major resurgence as a medium
for the arts. A wealth of new programming environments for the arts, such as Processing,
SuperCollider, ChucK, VVVV and OpenFrameworks have joined more established environments
such as PureData and Max which have themselves gained enthusiastic adoption outside their
traditional academic base. These environments offer varied approaches to supporting artistic
use, including alternative programming languages, interfaces and workflow.

The purpose of the present discussion is to examine psychological issues which the resurgence
of artistic programming has brought to the fore. What is the relationship between an artist,
their creative process, their program, and their artistic works? We will look for answers from
perspectives of psychology, cognitive linguistics, computer science and computational creativity,
but first from the perspective of the artist.

2 Creative Processes

The painter Paul Klee [1953, p. 33] describes a creative process as a feedback loop: “Already
at the very beginning of the productive act, shortly after the initial motion to create, occurs
the first counter motion, the initial movement of receptivity. This means: the creator controls
whether what he has produced so far is good. The work as human action (genesis) is productive
as well as receptive. It is continuity.” This is creativity without planning, a feedback loop
of making a mark on canvas, perceiving the effect, and reacting with a further mark. Being
engaged in a tight creative feedback loop places the artist close to their work, guiding an idea
to unforeseeable conclusion through a flow of creative perception and action. Klee writes as a
painter, working directly with his medium. Programmer-artists instead work using computer
language as a textual representation of their medium, and it might seem that this extra level of
abstraction could hinder creative feedback. We will see however that this is not necessarily the
case, beginning with the account of Turkle and Papert [1992], describing a bricolage approach
to programming by analogy with painting:

The bricoleur resembles the painter who stands back between brushstrokes, looks at
the canvas, and only after this contemplation, decides what to do next. Bricoleurs use a
mastery of associations and interactions. For planners, mistakes are missteps; bricoleurs
use a navigation of midcourse corrections. For planners, a program is an instrument for
premeditated control; bricoleurs have goals but set out to realize them in the spirit of



a collaborative venture with the machine. For planners, getting a program to work is
like “saying one’s piece”; for bricoleurs, it is more like a conversation than a monologue.
[Turkle and Papert, 1990, p. 136]

Although Turkle and Papert address gender issues in education, this quote should not be
misread as dividing all programmers into two types; while associating bricolage with feminine
and planning with male traits, they are careful to note that these are extremes of a behavioural
continuum. Indeed, programming style is clearly task specific: for example a project requiring
a large team needs more planning than a short script written by the end user.

Bricolage programming seems particularly applicable to artistic tasks, such as writing soft-
ware to generate music, video animation or still images. Imagine a visual artist, programming
their work using Processing. They may begin with an urge to draw superimposed curved lines,
become interested in a tree-like structure they perceive in the output of their first implemen-
tation, and change their program to explore this new theme further. The addition of the algo-
rithmic step would appear to affect the creative process as a whole, and we seek to understand
how in the following.

2.1 Creative Process of Bricolage

Fig. 1. The process of action and reaction in bricolage programming

Figure 1 shows bricolage programming as a creative feedback loop encompassing the written
algorithm, its interpretation, and the programmer’s perception and reaction to its output or
behaviour. The addition of the algorithmic component in the creative feedback loop makes an
additional inner loop explicit between the programmer and their text. At the beginning, the
programmer may have a half-formed concept, which only reaches internal consistency through
the process of being expressed as an algorithm. The inner loop is where the programmer elabo-
rates upon their imagination of what might be, and the outer where this trajectory is grounded
in the pragmatics of what they have actually made. Through this process both algorithm and
concept are developed, until the programmer feels they accord with one another or otherwise
judges the creative process to be finished.

Representations in the computer and the brain are evidently distinct from one another.
Computer output evokes perception, but that percept will both exclude features that are explicit
in the output and include features that are not, due to a host of effects including attention,
knowledge and illusion. Equally, a human concept is distinct from a computer algorithm. Perhaps



a program written in a declarative rather than imperative style is somewhat closer to a concept,
being not an algorithm for how to carry out a task, but rather a description of what is to be
done. But still, there is a clear line to be drawn between a string of discrete symbols in code and
the morass of symbolic, spatial and relational representations we assume underlies cognition.

There is however something curious about how the programmer’s creative process spawns
a second, computational one. The computational process is lacking in the cognitive abilities of
its author, but is nonetheless both faster and more accurate at certain tasks by several orders
of magnitude. It would seem that the programmer uses the programming language and its
interpreter as a cognitive resource, augmenting their own abilities in line with the extended
mind hypothesis [Clark, 2008]. We will revisit this issue within a formal framework in §5, after
first looking more broadly at how we relate programming to human experience, and related
issues of representation.

3 Anthropomorphism and Metaphor in Programming

Metaphor permeates our understanding of programming. Perhaps this is due to the abstract
nature of computer programs, requiring metaphorical constructs to allow us to ground program-
ming language in everyday reasoning. Petre and Blackwell [1999] gave subjects programming
tasks, and asked them to introspect upon their imagination while they worked. These self reports
are rich and varied, including exploration of a landscape of solutions, dealing with interacting
creatures, transforming a dance of symbols, hearing missing code as auditory buzzing, combi-
natorial graph operations, munching machines, dynamic mapping and conversation. While we
cannot rely on these introspective reports as authoritative on the inner workings of the mind,
the diversity of response hints at highly personalised creative processes, related to physical op-
erations in visual or sonic environments. It would seem that a programmer uses metaphorical
constructs defined largely by themselves and not by the computer languages they use. How-
ever mechanisms for sharing metaphor within a culture do exist. Blackwell [2006a] used corpus
linguistic techniques on programming language documentation in order to investigate the con-
ceptual systems of programmers, identifying a number of conceptual metaphors listed in Figure
2. Rather than finding metaphors supporting a mechanical, mathematical or logical approach
as you might expect, components were instead described as actors with beliefs and intentions,
being social entities acting as proxies for their developers.

The above research suggests that programmers understand the operation of their programs
by metaphorical relation to their experience as a human. Indeed the feedback loop described in
§2 is by nature anthropomorphic; by embedding the development of an algorithm in a human
creative process, the algorithm itself becomes a human expression. Dijkstra [1988] strongly
opposed such approaches: “I have now encountered programs wanting things, knowing things,
expecting things, believing things, etc., and each time that gave rise to avoidable confusions. The
analogy that underlies this personification is so shallow that it is not only misleading but also
paralyzing.” Dijkstra’s claim is that by focusing on the operation of algorithms, the programmer
submits to a combinatorial explosion of possibilities for how a program might run; not every
case can be covered, and so bugs result. Dijkstra argues for a strict, declarative approach to
computer science and programming in general, which he views as so radical that we should not
associate it with our daily existence, or else limit its development and produce bad software.

The alternative view presented here is that metaphors necessarily structure our understand-
ing of computation. This view is sympathetic to a common assumption in the field of cognitive
linguistics, that our concepts are organised in relation to each other and to our bodies, through
conceptual systems of metaphor. Software now permeates Western society, and is required to
function reliably according to human perception of time and environment. Metaphors of software
as human activity are therefore becoming ever more relevant.



Components are agents of action in a causal universe.
Programs operate in historical time.
Program state can be measured in quantitative terms.
Components are members of a society.
Components own and trade data.
Components are subject to legal constraints.
Method calls are speech acts.
Components have communicative intent.
A component has beliefs and intentions.
Components observe and seek information in the execution environment.
Components are subject to moral and aesthetic judgement.
Programs operate in a spatial world with containment and extent.
Execution is a journey in some landscape.
Program logic is a physical structure, with material properties and
subject to decay.
Data is a substance that flows and is stored.
Technical relationships are violent encounters.
Programs can author texts.
Programs can construct displays.
Data is a genetic, metabolizing lifeform with body parts.
Software tasks and behaviour are delegated by automaticity.
Software exists in a cultural/historical context.
Software components are social proxies for their authors.

Fig. 2. Conceptual metaphors derived from analysis of Java library documentation by Blackwell [2006a]. Program
components are described metaphorically as actors with beliefs and intentions, rather than mechanical imperative
or mathematical declarative models.

4 Symbols and Space

We now turn our attention to how the components of the bricolage programming process shown
in Figure 1 are represented, in order to ground understanding of how they may interrelate.
Building upon the anthropomorphic view taken above, we propose that in bricolage program-
ming, the human cognitive representation of programs centres around perception. Perception is
a low dimensional representation of sensory input, giving us a somewhat coherent, spatial view
of our environment. By spatial we do not just mean in terms of physical objects, but also in
terms of features in the spaces of all possible tastes, sounds, tactile textures and so on. This
scene is built through a process of dimensional reduction from tens of thousands of chemo-,
photo-, mechano- and thermoreceptor signals. Algorithms on the other hand are represented in
discrete symbolic sequences, as is their output, which must go through some form of digital-to-
analogue conversion before being presented to our sensory apparatus, for example as light from
a monitor screen or sound pressure waves from speakers, a process we call observation. Recall
the programmer from §2, who saw something not represented in the algorithm or even in its
output, but only in their own perception of the output; observation may itself be a creative act.

The component from Figure 1 not yet mentioned in this section is that of programmers’
concepts. A concept is ‘a mental representation of a class of things’ [Murphy, 2002, p.5]. Figure
1 shows concepts mediating between spatial perception and symbolic algorithms, leading us to
ask; are concepts represented more like spatial geometry, like percepts, or symbolic language,
like algorithms? Our focus on metaphor leads us to take the former view, that conceptual repre-
sentation is grounded in perception and the body. This view is taken from Conceptual Metaphor
Theory (CMT) introduced by Lakoff and Johnson [1980], which proposes that concepts are pri-
marily structured by metaphorical relations, the majority of which are orientational, understood
relative to the human body in space or time. In other words, the conceptual system is grounded
in the perceptual system. Gärdenfors [2000] builds upon this by further proposing that the se-
mantic meanings of concepts and the metaphorical relationships between them are geometrical
properties and relationships. Concepts themselves are represented by geometric regions of low



dimensional spaces defined by quality dimensions, either mapped directly from, or structured
by metaphorical relation to perceptual qualities. For example “red” and “blue” are regions in
perceptual colour space, and the metaphoric semantics of concepts within the spaces of mood,
temperature and importance may be defined relative to geometric relationships of such colours.

Gärdenforsian conceptual spaces are compelling when applied to concepts related to bodily
perception, emotion and movement, and Forth et al. [2008] report early success in computa-
tional representations of conceptual spaces of musical rhythm and timbre, through reference to
research in music perception. However, it is difficult to imagine taking a similar approach to
computer programs. What would the quality dimensions of a geometrical space containing all
computer programs be? There is no place to begin to answer this question; computer programs
are symbolic in nature, and cannot be coherently mapped to a geometrical space grounded in
perception.

For clarity we turn once again to Gärdenfors [2000], who points out that spatial representa-
tion is not in opposition to symbolic representation; they are distinct but support one another.
This is clear in computing, hardware exists in our world of continuous space, but thanks to
reliable electronics, conjures up a symbolic world of discrete computation. Our minds are able
to do the same, for example by computing calculations in our head, or encoding concepts into
phonetic movements of the vocal tract or alphabetic symbols on the page. We can think of our-
selves as spatial beings able to simulate a symbolic environment to conduct abstract thought
and open channels of communication. On the other hand, a piece of computer software is a
symbolic being able to simulate spatial environments, perhaps to create a game world or guide
robotic movements, both of which may include some kind of model of human perception.

Computer language operates in the domain of abstraction and communication but in general
does not at base include spatial semantics. In some cases computer languages are described as
‘visual’ even when spatial arrangement is purely secondary notation, ignored by the interpreter,
such as in Patcher languages [Puckette, 1988]. In fact spatial layout is a feature of secondary
notation in mainstream ‘textual’ languages too, through use of whitespace with no syntactical
meaning. That programmers need to use spatial layout as a crutch while composing symbolic
sequences is telling; to the interpreter, a block may be a subsequence between braces, but to
an experienced programmer it is a perceptual gestalt grouped by indentation. From this we can
understand computation as separate from spatial reasoning, but supported by it, with secondary
notation helping bridge the divide.

An important aspect of CMT is that a conceptual system of semantic meaning exists within
an individual, not in the world. Through language, metaphors become established in a culture
and shared by its participants, but this is an effect of individual conceptual systems interacting,
and not individuals inferring and adopting external truths of the world (or of possible worlds).
This would account for the varied range of metaphor in programming discussed in §3, as well
as the general failure of attempts at designing metaphor into computer interfaces [Blackwell,
2006b]. Each programmer has a different set of worldly interests and experiences, and so estab-
lishes different metaphorical systems to support their programming activities.

5 Components of creativity

We now have sufficient grounds to fully characterise how the creative process operates in our case
study of bricolage programming. For this we employ the Creative Systems Framework (CSF), a
high-level formalisation of creativity introduced by Wiggins [2006a,b] and based upon the work
of Boden [2003]. Creativity is characterised as a search in a space of concepts. Three sets of rules
are employed in this search; R defining the search space itself, T defining traversal of the space
and E defining evaluation of concepts found in the space. However, the CSF describes much
more than a reactive process of traversal and evaluation. Creativity also requires introspection,
self-modification and for boundaries to be broken. In other words, the rulesets R, T and E are
examined and challenged by the creative agent following them.



Using the terms of Gärdenfors [2000], R is a concept defining a space of concept instances.1

For example in a creative search for music within a genre, the genre would be the concept and
a piece of music conforming to a genre would be a instance of that concept. Crucially, R is not
a closed space, but rather defined as a subspace of the universe of all possible concepts. This
means that a creative agent may creatively push beyond the boundaries of the search as we will
see.

We are now in a position to clarify the bricolage programming process introduced in §2.1
within the CSF. As shown in Figure 3, the ruleset R defines the programmer’s concept, being
their current artistic focus structured by learnt techniques and conventions, the traversal strat-
egy T is the process of encoding and interpreting the algorithm, and the evaluation function E
is the perceptual process of observation and reaction.

Fig. 3. The process of action and reaction in bricolage programming from Figure 1, annotated with the R
conceptual space, T traversal strategy and E evaluation components of the Creative Systems Framework.

In §2, we alluded to the extended mind hypothesis [Clark, 2008], claiming that bricolage
programming takes part of the human creative process outside of the mind and into the com-
puter. The above makes clear what we claim is being externalised: part of the traversal strategy
T . The programmer’s concept R motivates a development of the strategy T to be encoded in a
program, but the programmer does not necessarily have the cognitive ability to fully evaluate
the program. That task is taken on by the interpreter running on a computer system, meaning
that T encompasses both encoding by the human and interpretation by the computer.

The traversal strategy T is structured by the techniques and conventions employed to convert
concepts into operational algorithms. These may include design patterns, a standardised set
of ways of building that have become established around imperative programming languages.
Each design pattern identifies a kind of problem, and describes a kind of structure as a kind of
solution.2

The creative process is constrained by R, being the programmer’s idea of what is a valid
end result. This is shaped by the programmer’s current artistic focus, being the perceptual
qualities they are currently interested in, perhaps congruent with a cultural theme such as a
musical genre or artistic movement. Transformational creativity can be triggered in the CSF
when application of T results in a concept instance that exists outside the constraining bounds
of R, shown in Figure 4. If the instance is valued according to E , then R is changed to include
1 The terms used by Gärdenfors [2000] diverge from those used by Wiggins [2006a,b]. Wiggins uses the term

conceptual space in the place of Gärdenfors’ concept, and concept in the place of concept instance. The meaning
is however the same, particularly when the recursive hierarchy of Wiggins’ theory is taken into account.

2 Interestingly, this structural heuristic approach to problem solving originated in the field of urban design
[Alexander et al., 1977].



Fig. 4. Application of a traversal strategy T leading outside the concept R, triggering transformational creativity.

it. If the instance is not valued, then T is changed to avoid that instance in the future. As a
result of including external interpretation in T , the programmer is likely to be less successful
in writing software that meets their preconceptions, but as a result more successful in being
surprised by the results. In other words, the artist’s act of externalising part of T as a computer
program makes the results less predictable, and transformational creativity more likely.

In artistic bricolage programming, then, we conclude that creativity is a process of imagining
a concept R, encoding an operational algorithm as part of T to explore within and beyond R,
and a perceptual process E to evaluate the output. Through this process both R and T are
continually transformed in respect of one another, in creative feedback.

According to our embodied view, not only is perception crucial in evaluating output within
bricolage programming, but also in structuring the space in which programs are conceptualised.
Indeed if the embodied view of CMT holds in general, the same would apply to all creative
endeavour. From this we find a message for the field of computational creativity: a prerequisite
for an artificial creative agent is in acquiring computational models of perception sufficient to
both evaluate its own works and structure its conceptual system. Only then will the agent have
a basis for guiding changes to its own conceptual system and generative traversal strategy, able
to modify itself to find artifacts that it was not programmed to find, and place value judgements
on them. Such an agent would need to adapt to human culture in order to interact with shifting
cultural norms, keeping its conceptual system and resultant creative process as coherent within
that culture. For now however this is all wishful thinking, and we must be content with generative
computer programs which extend human creativity, but are not creative agents in their own
right.

6 Programming in Time

“She is not manipulating the machine by turning knobs or pressing buttons. She is
writing messages to it by spelling out instructions letter by letter. Her painfully slow
typing seems laborious to adults, but she carries on with an absorption that makes it
clear that time has lost its meaning for her.” Sherry Turkle [2005, p. 92], on Robin, aged
4, programming a computer.

Having investigated the representation and operation of bricolage programming we now ex-
amine how the creative process operates in time. Considering computer programs as operating
in time at all, rather than as logic abstract from the world, is itself a form of the anthropomor-
phism examined in §3. However from the above quotation it seems that Robin stepped out of
any notion of physical time, and into the algorithm she was composing, entering a timeless state.
Speaking anecdotally, programmers report losing hours as they get ‘in the flow’ when writing
software. Perhaps a programmer is thinking in algorithmic time, attending to control flow as it
replays over and over in their imagination, and not to the world around them. Or perhaps they



are not attending to the passage of time at all, thinking entirely of declarative abstract logic,
in a timeless state of building. In either case, it would seem that the human is entering time
relationships of their software, rather than the opposite, anthropomorphic direction of software
entering human time. However there are ways in which human and computational time may be
united, which we will come to shortly.

Temporal relationships are generally not represented in source code. When a programmer
needs to do so, for example as an experimental psychologist requiring accurate time mea-
surements, or a musician needing accurate synchronisation between processes, they run into
problems. With the wide proliferation of interacting embedded systems, this is becoming a
broad concern [Lee, 2009]. In commodity systems time has been decentralised, abstracted away
through layers of caching, where exact temporal dependencies and intervals between events are
not deemed worthy of general interest. Programmers talk of ‘processing cycles’ as a valuable
resource which their processes should conserve, but they generally no longer have programmatic
access to the high frequency oscillations of the central processing units (now, frequently plural)
in their computer. The allocation of time to processes is organised top-down by an overseeing
scheduler, and programmers must work to achieve what timing guarantees are available. All is
not lost however, realtime kernels are now available for commodity systems, allowing psycholo-
gists [Finney, 2001] and musicians (e.g. via http://jackaudio.org/) to get closer to physical
time. Further, the representation of time semantics in programming is undergoing active re-
search in a subfield of computer science known as reactive programming [Elliott, 2009], with
applications emerging in music [McLean and Wiggins, 2010].

6.1 Interactive programming

Programmers who ‘think’ in algorithmic time, like Robin earlier, are well served by dynam-
ically interpreted languages. These allow a programmer to examine an algorithm while it is
interpreted, taking on live changes without restarts. This is known as interactive programming,
and unites the time flow of a program with that of its development. Interactive programming
makes a dynamic creative process of test-while-implement possible, rather than the conven-
tional implement-compile-test cycle, so that arrows shown in Figures 1 and 3 show concurrent
influences between components rather than time-ordered steps.

Interactive programming not only provides a more efficient creative feedback loop, but also
allows a programmer to connect software development with time based art. Since 2003 an
active group of practitioners and researchers have been developing new approaches to making
computer music and video animation, collectively known as Live coding [Blackwell and Collins,
2005, Ward et al., 2004, Collins et al., 2003, Rohrhuber et al., 2005]. The archetypal live coding
performance involves programmers writing code on stage, with their screens projected for an
audience, while the code is dynamically interpreted to generate music or video. Here the process
of development is the performance, with the work generated not by a finished program, but its
journey of development from an empty text editor to complex algorithm, generating continuously
changing musical or visual form along the way. This is bricolage programming perhaps taken
to a logical and artistic conclusion.

7 Conclusion

What we have seen provides strong motivation for programming which address the concerns of
artists. These include concerns of workflow, where any time elapsed between source code edit and
interpreted output is slows the creative process. Concerns of interfaces are also important, where
in certain situations greater emphasis is placed on presentation of short scripts in their entirety
as per bricolage programming, rather than hierarchical views of larger codebases. Perhaps most
importantly, we have seen motivated the development of programming languages to greater
support artistic expression.



From the embodied view we have taken, it would seem useful to integrate time and space
further into programming languages. In practice integrating time can mean on one hand includ-
ing temporal representations in core language semantics, and on the other uniting development
time with execution time, as we have seen with interactive programming. Temporal semantics
and interactive programming both already feature strongly in some programming languages for
the arts, as we saw in §6, but how about analogous developments in integrating space into the
semantics and activity of programming? This is a less well understood area requiring further
research, but it would seem that novel approaches to the integration of computational geometry
and perceptual models such as computer vision into programming language could serve artists
well. By harnessing and extending research into visual programming languages, this could ex-
tend to notation, taking for example the ReacTable as inspiration [Jordà et al., 2007].

We began with Paul Klee, a painter whose production was limited by his two hands. The
artist-programmer is not so limited, but shares what Klee called his limitation of reception, by
the “limitations of the perceiving eye”. This is perhaps a limitation to be expanded but not
overcome, rather celebrated and fully explored using all we have, including our new computer
languages. We have characterised a bricolage approach to artistic programming as an embodied,
creative feedback loop. This places the programmer close to their work, grounding symbolic
computation in orientational and temporal metaphors of their human experience. However the
computer interpreter extends the programmer’s abilities beyond their own imagination, making
unexpected results likely, leading the programmer to new creative possibilities.



Bibliography

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, first edition, August 1977. ISBN
0195019199.

Alan Blackwell and Nick Collins. The programming language as a musical instrument. In
Proceedings of PPIG05. University of Sussex, 2005.

Alan F. Blackwell. Metaphors we program by: Space, action and society in java. In Proceedings
of the Psychology of Programming Interest Group 2006, 2006a.

Alan F. Blackwell. The reification of metaphor as a design tool. ACM Trans. Comput.-Hum.
Interact., 13(4):490–530, December 2006b. ISSN 1073-0516. doi: 10.1145/1188816.1188820.

Margaret A. Boden. The Creative Mind: Myths and Mechanisms. Routledge, 2 edition, Novem-
ber 2003. ISBN 0415314534.

Andy Clark. Supersizing the Mind: Embodiment, Action, and Cognitive Extension (Philosophy
of Mind Series). OUP USA, November 2008. ISBN 0195333217.

Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live coding in laptop perfor-
mance. Organised Sound, 8(03):321–330, 2003. doi: 10.1017/S135577180300030X.

Edsger W. Dijkstra. On the cruelty of really teaching computing science. 1988.
Conal Elliott. Push-pull functional reactive programming. In Haskell Symposium, 2009.
Steven A. Finney. Real-time data collection in linux: A case study. Behavior Research Methods,

Instruments, & Computers, 33(2):167–173, May 2001.
Jamie Forth, Alex McLean, and Geraint Wiggins. Musical creativity on the conceptual level.

In IJWCC 2008, 2008.
Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. The MIT Press, March 2000.

ISBN 0262071991.
S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner. The reactable: Exploring the synergy

between live music performance and tabletop tangible interfaces. In Proc. Intl. Conf. Tangible
and Embedded Interaction (TEI07), 2007.

Paul Klee. Pedagogical sketchbook. Faber and Faber, 1953.
George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago Press, first

edition edition, April 1980. ISBN 0226468011.
Edward A. Lee. Computing needs time. Commun. ACM, 52(5):70–79, 2009. ISSN 0001-0782.

doi: 10.1145/1506409.1506426.
Alex McLean and Geraint Wiggins. Petrol: Reactive pattern language for improvised music. In

Proceedings of the International Computer Music Conference, June 2010.
Gregory L. Murphy. The Big Book of Concepts (Bradford Books). The MIT Press, August 2002.

ISBN 0262632993.
Marian Petre and Alan F. Blackwell. Mental imagery in program design and visual program-

ming. International Journal of Human-Computer Studies, 51:7–30, 1999.
M. Puckette. The patcher. In Proceedings of International Computer Music Conference, 1988.
Julian Rohrhuber, Alberto de Campo, and Renate Wieser. Algorithms today: Notes on language

design for just in time programming. In Proceedings of the 2005 International Computer Music
Conference, 2005.

Sherry Turkle. The Second Self: Computers and the Human Spirit, Twentieth Anniversary
Edition. The MIT Press, 20 anv edition, July 2005. ISBN 0262701111.

Sherry Turkle and Seymour Papert. Epistemological pluralism: Styles and voices within the
computer culture. Signs, 16(1):128–157, 1990. ISSN 00979740. doi: 10.2307/3174610.

Sherry Turkle and Seymour Papert. Epistemological pluralism and the revaluation of the con-
crete. Journal of Mathematical Behavior, 11(1):3–33, March 1992.



Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex McLean, Dave Griffiths, Nick Collins,
and Amy Alexander. Live algorithm programming and a temporary organisation for its
promotion. In Olga Goriunova and Alexei Shulgin, editors, read me — Software Art and
Cultures, 2004.

G. A. Wiggins. A preliminary framework for description, analysis and comparison of creative
systems. Journal of Knowledge Based Systems, 2006a.

G. A. Wiggins. Searching for computational creativity. New Generation Computing, 24(3):
209–222, 2006b.


