
extramuros: making music in a browser-based, language-neutral
collaborative live coding environment

David Ogborn
McMaster University
ogbornd@mcmaster.ca

Eldad Tsabary
Concordia University

eldad.tsabary@concordia.ca

Ian Jarvis
McMaster University

lostinthegroove@gmail.com
Alexandra Cárdenas

University of the Arts in Berlin
tiemposdelruido@gmail.com

Alex McLean
University of Leeds

alex.mclean@icsrim.org.uk

ABSTRACT

e extramuros soware was developed to explore live coding and network music, bringing live coding musicians to-
gether around shared text buffers. Originally developed to support a globally distributed live coding ensemble, the
extramuros soware has found additional application in projecting laptop orchestra performances to remote sites, in
zero-installation workshop and performance seings, and in facilitating the efficient display of code by an ensemble.
As the soware works by connecting shared text buffers to audio programming languages through specific network
connections augmented by pipes, it is a language-neutral approach. is paper describes the overall architecture of the
extramuros system, relating that architecture to perennial network music concerns for bandwidth, security, and syn-
chronization. Examples of early use in workshops, rehearsals and performances by laptop orchestras and other small
telematic ensembles are discussed, leading to a concluding discussion of directions for future work.

1. Introduction

Music is deeply collaborative, and network music (Bischoff, Gold, and Horton 1978; Kim-Boyle 2009; Fields 2012) wherein
musicians of different types and genres collaborate (usually but not always over the Internet) is a burgeoning field of
research. e main currents of research include a focus on extending traditional musical performance over the network
(Alexandraki and Akoumianakis 2010), as well as exploring the network as an inherent part of a “new” instrument
(Gremo 2012; Cáceres and Renaud 2008). Live coding can also be deeply collaborative. Code is a highly efficient means of
communicating intentions, with efficiency potentially understood as any or all of efficiency in comprehension by a human
reader, efficiency in transmission over a network, or efficiency in translation into a sounding result. e extramuros
soware was developed to explore live coding and networkmusic, bringing live codingmusicians together around shared
text editing interfaces (“shared buffers”).

In the basic operation of extramuros, a server application is run on one computer. Some number of performers use a web
browser to connect to the server and edit shared text, with each person’s editing more or less immediately visible to all
the others. At any computer where the sounding result of the code is desired (for example, all of the individual laptops in
a globally distributed laptop ensemble), a client application is run that receives evaluated text from the server and sends
it to the audio programming language of choice over standard UNIX-style pipes. Anyone can edit anyone else’s code at
any time, and all code is sent to all listening clients (and thus, potentially executed on audio programming languages
connected to all listening clients).

As the extramuros system simply collects text that is piped to another application, it is “language-neutral”. is neutrality
is especially pertinent in the specific context of the live coding community, which uses a large and growing number
of distinct languages, with individual artists and researchers bringing forward new languages continually (whether as
ephemeral experiments or as more persistent pieces of community infrastructure). extramuros’ language-neutrality
allows it to be a site that brings together “partisans” of different languages, because their familiarity with the extramuros
web-based interface can represent a bridging factor next to their unfamiliarity with a given language. e extramuros
server does not evaluate or render any code, but rather just sends such text code back to the local clients that pipe it to
an existing audio programming language. us, as new text-based languages enter use, extramuros will continue to be
immediately useful with them. Both Tidal (McLean and Wiggins 2010),] and SuperCollider (McCartney 1998) have been
used heavily with current versions of extramuros.

mailto:ogbornd@mcmaster.ca
mailto:eldad.tsabary@concordia.ca
mailto:lostinthegroove@gmail.com
mailto:tiemposdelruido@gmail.com
mailto:alex.mclean@icsrim.org.uk


is paper discusses some diverse applications of extramuros, the system’s soware architecture and how that architec-
ture responds to some of the perennial challenges of network music, and then presents some qualitative feedback from
early workshop deployments. e paper concludes with a discussion of directions for future development of this, and
related, systems.

2. Distributed Ensembles and Other Applications

extramuros was originally developed with the intent of allowing a distributed ensemble of live coding performers to
rehearse, perform and learn together, connected by the Internet. It was first used in an ongoing series of “shared buffer”
performances with the language Tidal (McLean and Wiggins 2010), and then subsequently used in the first distributed
algorave (Collins and McLean 2014) performance (Colour TV, a.k.a. Alexandra Cárdenas and Ashley Sagar, at the 2014
Network Music Festival).

While supporting such globally distributed ensembles was the primary intent behind the creation of extramuros, the
approach taken here supports a number of applications or situations that go beyond this, including “projected ensembles”
and “zero installation ensembles”. e soware also allows for a comfortable relationship between large ensembles and
the live coding practice of sharing one’s screen.

2.1. Projected ensembles

While not the original target of development, extramuros can be used for the “projection” of an ensemble’s performance
to a second location. For example, a laptop orchestra (Trueman et al. 2006; Smallwood et al. 2008; Wang et al. 2008 )
whose performance practice involves routinely playing together in the same room, can perform through the web browser
interface, with the sounding result of that performance rendered both at their location and at another site, or sites.

e Cybernetic Orchestra at McMaster University (Ogborn 2012b; Ogborn 2014) employed this technique to participate in
the 2014 Network Music Festival in Birmingham, UK.e orchestra performed a live-coding roulee in SuperCollider on
a circular array of 8 loudspeakers, “projecting” the code from a closed location in Hamilton, Canada to the public festival
site in the UK. As only small pieces of text code were traveling from Canada to the UK, this projection of 8-channel audio
plus high resolution video required almost no bandwidth at all.

2.2. Zero installation ensembles

An unanticipated benefit of the approach taken here was the utility of extramuros in workshop and educational seings
where participants arrivewith diverse laptops lacking the specific audio programming environments used in the activities.
Because, in such seings, people are together in a room, only a single computer needs to have an appropriately configured
audio programming environment (and hardware) with the other computers accessing this through the browser interface.
Moreover, the utility of this zero-installation aspect of the approach is not limited to workshop and other “entry-level”
seings, but extends to any collective performance seing where quick and robust installation is required.

e Cybernetic Orchestra has taken advantage of this zero-installation aspect in at least three distinct ways: (1) to
give live coding workshops to members of the community, (2) as a way of geing new members of the orchestra live
coding during their first minute at a rehearsal, and (3) as a mode of performing together in public. In early February
2015, the orchestra performed at the world’s first ever algoskate, an event combining live-coded dance music as in an
algorave with ice skating. e orchestra’s 8 performers were distributed in a long line alongside a skating rink, with
each performer placing their computer on top of a large 200-wa, 15-inch sound reinforcement style speaker. All but
one of the computers were connected to a local area network via Cat6 Ethernet cables (run through the snow) with
the one computer connected to the network via Wifi. Because the event was part of a busy winter festival (the city
of Hamilton’s WinterFest) this outdoor setup had to take place very quickly (in less than an hour). e fact that the
members of the ensemble only had to open their computers and web browser freed their aention to run cables through
the snow to speakers and switches. During the algoskate, one member of the ensemble put on their skates, connected to
the orchestra’s network via WiFi and performed Tidal live coding on their smartphone (with zero configuration) while
skating around the rink, thus entering the history books as the first person to skate and live code at the same time!

2.3. “Show Us Your Screens”

In the above-mentioned algoskate, another benefit of the extramuros approach was on display (pun intended). e web
browser interface provides a single, unified visual method of sharing code with the audience. While the classic TOPLAP



demand to “show us your screens” is easy enough to make in the case of a solo or duo performer, it becomes more fraught
as the number of performers increase. When everyone is coding Tidal or SuperCollider through a shared web browser
interface, this interface provides a single visual object that can be shared with the audience, with no requirement for
elaborate or bandwidth-hungry network video compositing.

Figure 1: A typical extramuros browser window with 8 text editing regions

We can speculate that this type of application could have an impact on the evolution of live coding in large ensemble,
“laptop orchestra” contexts. While many laptop orchestras are connected in some way with live coding, few have made
it a central and defining activity. is could be in part because of the lack of an established practice of making a unified
visual experience of live coding activity with so many people. While systems like Republic (Campo et al. 2012)), Utopia
(Wilson et al. 2014), or EspGrid (Ogborn 2012a) allow performers in an ensemble to see what other performers are doing,
copy their code, etc, they don’t necessarily or inherently provide a unified visual focus and so performers tend to be in a
situation of guessing what the other performers are doing (until closer investigation through their system’s affordances
provides the answer). Without special care, this becomes a situation of laptop performers closeted behind their screens,
not fully co-present in the virtual space of the codework.

3. Network Music Challenges and Aritecture

Performing collaboratively in networked contexts raises many challenges. e extramuros architecture responds to
common network music challenges around security and timing/synchronization, while the fact that small pieces of text
and operations on text are the primary pieces of transmied information also makes the soware quite economical in
terms of bandwidth requirements. Before discussing the nature of these security and synchronization considerations,
it will be helpful to outline the architecture of extramuros in slightly more detail. e extramuros server and clients
are implemented in node.js. e share.js library (an operational transform library) is used for collaborative text editing,
with common web browsers providing readily available virtual machines for the collaborative editing of text code. e
0mq library is used for reliable and scalable connections from the single server application back to the, potentially quite
numerous, audio “render” clients. e rendering of code into audio results is out-sourced via UNIX pipes to external
audio programming languages:
When a performer edits any of the editable text regions provided in the browser by the extramuros server, this involves
back and forth communication between the browser and the server via websockets, mediated by the share.js library.
is ongoing communication ensures that all browsers who have that page open see the current state of all the editable
windows, and can potentially intervene and change them. When a performer clicks an “evaluation” buon next to any
given editable region, this triggers an HTTP request to the server application, which if successful, triggers the output of
text in the client application that is then piped to some audio programming language.

3.1. Security

Information security issues in network music come in two forms: sometimes common security measures represent obsta-
cles to the performance of networkmusic, while at other times it is required that networkmusicians implement additional
security measures in order to protect their performances.



Figure 2: Basic extramuros architecture diagram showing direction of data flow during editing and evaluation

Firewalls are a common obstacle in networkmusic performances, as the laer oen take place in institutional or domestic
contexts where access to the configuration of the firewall is prohibitive. In the case of extramuros, whose server listens
for incoming TCP connections, firewalls are rarely a problem when the server application is run at publicly reachable
location: all of the connections from other points/hosts to the server are “outbound” from the perspective of those
other points/hosts, and firewalls tend to be configured to allow outbound connections on arbitrary ports without special
reconfiguration. Provided a copy of the extramuros server is running somewhere, this allows potentially as many as all of
the working/rendering/listening locations to be behind home or institutional firewalls. (At the first public “shared buffer”
performance with extramuros, one of the performers was working on headphones at a café in a theme park, where one
has to presume there would be no possibility of negotiating a momentary reconfiguration of the firewall!).

Use of extramuros entails open access to a web page requires some security measures in order to prevent sabotage. For
example, on one occasion, an extramuros/tidal workshop was given to first year students at Concordia University in two
groups. Once Group 2 was live coding, a mysterious code was hijacking the music with selfish, intrusive sounds, which
were not generated by any of the participants. Apparently a mischievous student from Group 1 was having “some fun”
from an unknown location. Identity still unknown, he/she apologized anonymously in the chat window.

Security is addressed primarily through a rudimentary password system. e web browser interface includes a field to
enter a password. is password is included in the transmission back to the serverwhenever one of the buons to evaluate
code is pressed and the server quietly ignores any such evaluation requests that arrive without the correct password. If
no password is entered, an in-browser alert pops up to remind the performer to enter a password, a measure suggested by
early experiences, where reloading the browser window and forgeing to re-enter the password was a common mistake.

e current mechanisms do potentially open the door to security problems on the audio rendering/listening/client com-
puters, and more aention to the security implications of the system are without a doubt an important direction for
future work on the system. A part of the “solution” may be to establish practices and guidelines in each of the languages
used with the system so that languages are addressed in a “secure mode”, i.e. with no access to the file system outside of
a certain folder or set of user permissions.

3.2. Synronization

In the broadest sense, synchronization (i.e. latency) in extramuros is addressed by the fact that the same code is rendered
at each render location. Depending on the nature of the structures deployed, the result at each client location could be
more or less identical. When it is a maer of specifying paerns (in other words, quantized information at a relatively
low frequency) as in the case with typical uses of Tidal, in most cases the different locations will render the same thing.
ere is the possibility that a piece of code might arrive just before a cycle boundary (i.e. a quantization point) on a given
client machine and just aer the same boundary on another client machine, so that briefly people will hear different
things at each location. However, in a live coding context it is likely that a new evaluation will arrive a moment later
with a similar relationship to the cycle boundary and then the identity of the two listening experiences (at least as signals
at the DAC, not of course as identical acoustic and psychoacoustic experiences) will converge again.

In other code situations, without a high-level paern focus and quantization, it is possible for the signals produced to
diverge more. Consider, for example, the following SuperCollider/JITlib situation:

~a = { SinOsc.ar(0.1) } // someone makes a 0.1 Hz LFO on all render machines

~b = { SinOsc.ar(0.5) } // then a moment later, another LFO on all render machines

~c = { ~a.ar * ~b.ar } // then, the product of the two LFOs



e shape of oscillator ~c in the code above is highly dependent on the specific amount of time that elapses between the
evaluation of ~a and ~b. Depending on the use to which ~c is put, this could result in substantially different sonic results.
Collective live coding with the current extramuros architecture might take account of this dynamic by avoiding those
kind of interdependencies between synthesis nodes:

~c = { SinOsc.ar(0.1) * SinOsc.ar(0.5) } // should be very close on all machines

However, this represents a rather unnatural constraint, and suggests that fine-grained time synchronization mechanisms,
like EspGrid, could be quite important to the future development of networked live coding. Triggering code evaluation
in the browser could schedule a packet of code to be evaluated at a more precise moment in the short-term future, as
there are numerous situations where the sonic result can be quite different depending on small differences in the time of
execution of code:

~a = { SinOsc.ar(1000) }

~b = { SinOsc.ar(1000) }

~c = { ~a.ar + ~b.ar } //

In the example above, the spectral energy at 1000 Hz could go from doubled (effectively, energy of ~a plus energy of ~b) to
completely phased out, depending on a mere 0.5 millisecond change in the time of execution of ~b relative to ~a. At 5000
Hz, a 100 microsecond difference in time of execution (4 samples at 44100 Hz) can either double or eliminate the energy.
e implementation and use of sample-accurate networked synchronization methods thus has a special relevance to
projects like extramuros, that mirror the execution of code to multiple points.

Precise mechanisms for the controlling the logical time of execution of code, however, will not exhaust the broader
question of coordinating the state of distributed machines. When code is executed in an extramuros browser window
that calls upon any form of pseudo-random generator, the behaviour of the multiple client languages in the extramuros
network will diverge. Intuition suggests that this is the type of challenge (i.e. random processes distributed over net-
work architecture) that may ultimately be addressed by new languages designed from the ground up around the idea of
collaborative, networked editing.

4. Workshop Feedba

On several occasions, electroacoustic (EA)majors at Concordia University (Montréal) live-coded in Tidal with extramuros
in pedagogical seings, including a first year EA studio class, a second year EA ear training class, and a Concordia Laptop
Orchestra (CLOrk) session. In an anonymous survey conducted with CLOrk members aerwards, students commented
that live coding in this seing was “logical” and “flexible”, that it produced “instantaneous results”, and that it had “almost
limitless potential” for “collaborative, digital expression” and “possibilities for composing [that] are quite vast.” Students
also commented in the survey that this experience was “fun” because it “produced sound right away,” but that their
ability to express themselves was between “very limited” to “none at all”, due to their inexperience with text-based
programming. A student noted, “It would take a lot of time to feel flexible or expressive.” (is response is, of course,
a response not only to the extramuros interface but also to the initial experience of programming audio operations in a
text-based environment.)

According to students’ survey responses, thisminimal expressive ability also led tominimal interactive ability in their first
extramuros/Tidal tryout. Nonetheless, the visibility of the shared code on every laptop screen succeeded in generating at
least some interactive engagement, as evident in these students’ survey comments: “it was interesting to have ensemble
code-visibility” and “viewing the code of others gave me ideas about what gaps to fill, or when to be quiet.” Commenting
on musicality, students noted that the effortless synchronization “worked” and that it was “a big plus.” One student felt
that “abrupt entrances were annoying,” which were likely due to the inability to hear the code until it is evaluated. e
student proposed that “some type of auditioning options” could be useful.

e majority of the students commented favorably on the effects of this first experience on their interest in live coding.
Comments ranged from simple approvals, such as “it’s prey cool,” “it has great potential,” and “Yeah, I would totally try
it again” to insightful realizations such as “Yes, I never had a special interest towards live coding, but now I realize the
amount of focus and the interesting symbiotic relationship with code.” While acknowledging the practical advantages
of the zero installation and quick access allowed by extramuros, students asked to be tutored through the installation
process in order to be able to practice at home and be more prepared, expressive, and flexible in upcoming group sessions.



5. Conclusions and Future Work

A major limitation of the current system is that it provides lile in the way of feedback on the success or failure of code
evaluations, or other states of the audio rendering environment (for example, audio levels). To remedy this, a mechanism
is being created whereby arbitrary Open Sound Control messages arriving at the (single) server application, will come
back to all of the web browser environments as calls to a JavaScript stub function. is should allow the development
of distributed error messages, visual monitoring of audio levels, as well as more sophisticated forms of visualization of
collective live coding activity.

It is quite common in the community that currently exists around extramuros for informal communication, during re-
hearsals and performances, to take place in an IRC channel or other external chat mechanism, but these mechanisms
are not always strongly visible/present to participants. While the extremely spartan nature of the soware has helped
it to come into existence and support a number of artistic outputs, in the longer term the facilitation of communication
and co-presence is doubtless an area of the soware where considerable improvements could be made. Depending on
the performance context it may be desirable to have video, audio, and/or data streams from each of the collaborators
(Akoumianakis et al. 2008).

e language-neutrality of extramuros, based on the use of text code, is a project strength, and enables it to be used with
diverse live coding communities, and also potentially as a thread bridging those communities. At the same time, text
code comes with all kinds of cognitive demands that could be lessened through the exploration of structure editing tech-
niques. ese could be incorporated into extramuros without sacrificing the underlying language-neutrality in the form
of something like the Emacs “major modes” for given languages, with the various structure constraints and affordances
all calculated in the browser, and plain text still distributed to the audio rendering/listening clients as in the present
architecture.

5.1. Anowledgements

Special thanks to Research and High Performance Computing Services at McMaster University, to the McMaster Uni-
versity Arts Research Board for supporting the project Live Coding and e Challenges of Digital Society (of which this
work is a component), and to Ash Sagar, Holger Ballweg, Sco Wilson, Mike Hodnick, and all of the members of the Cy-
bernetic Orchestra and the Concordia Laptop Orchestra for using and discussing extramuros. Kudos also to the creators
and contributors of node.js, share.js and 0mq!

References

Akoumianakis, Demosthenes, George Vellis, Ioannis Milolidakis, Dimitrios Kotsalis, and Chrisoula Alexandraki. 2008.
“Distributed Collective Practices in Collaborative Music Performance.” In Proceedings of the 3rd International Conference
on Digital Interactive Media in Entertainment and Arts, 368–375. ACM. http://dl.acm.org/citation.cfm?id=1413700.

Alexandraki, Chrisoula, and Demosthenes Akoumianakis. 2010. “Exploring New Perspectives in Network Music Perfor-
mance: the Diamouses Framework.” Computer Music Journal 34 (2): 66–83.

Bischoff, John, Rich Gold, and Jim Horton. 1978. “Music for an Interactive Network of Microcomputers.” Computer Music
Journal 2 (3) (Dec): 24. doi:10.2307/3679453.

Cáceres, Juan-Pablo, and Alain B. Renaud. 2008. “Playing the Network: the Use of Time Delays as Musical Devices.” In
Proceedings of International Computer Music Conference, 244–250. http://classes.berklee.edu/mbierylo/ICMC08/defevent/
papers/cr1425.pdf.

Campo, A. de, Julian Rohrhuber, Hannes Hoelzl, Jankees van Kampen, and Renata Wieser. 2012. “Towards a Hyper-
democratic Style of Network Music.” In Paper Presented at the SuperCollider Symposium.

Collins, Nick, and Alex McLean. 2014. “Algorave: Live Performance of Algorithmic Electronic Dance Music.” In Proceed-
ings of the New Interfaces for Musical Expression Conference, London, UK. http://nime2014.org/proceedings/papers/426_
paper.pdf.

Fields, Kenneth. 2012. “Syneme: Live.” Organised Sound 17 (01) (Apr): 86–95. doi:10.1017/S1355771811000549.

Gremo, Bruce P. 2012. “Tele-Media and InstrumentMaking.” Organised Sound 17 (01) (Apr): 73–85. doi:10.1017/S1355771811000537.

Kim-Boyle, David. 2009. “Network Musics: Play, Engagement and the Democratization of Performance.” Contemporary
Music Review 28 (4-5): 363–375. doi:10.1080/07494460903422198.

http://dl.acm.org/citation.cfm?id=1413700
http://dx.doi.org/10.2307/3679453
http://classes.berklee.edu/mbierylo/ICMC08/defevent/papers/cr1425.pdf
http://classes.berklee.edu/mbierylo/ICMC08/defevent/papers/cr1425.pdf
http://nime2014.org/proceedings/papers/426_paper.pdf
http://nime2014.org/proceedings/papers/426_paper.pdf
http://dx.doi.org/10.1017/S1355771811000549
http://dx.doi.org/10.1017/S1355771811000537
http://dx.doi.org/10.1080/07494460903422198


McCartney, J. 1998. “Continued Evolution of the SuperCollider Real-Time Synthesis Environment.” In Proceedings of the
ICMC. http://quod.lib.umich.edu/cgi/p/pod/dod-idx/continued-evolution-of-the-supercollider-real-time-synthesis.pdf?
c=icmc;idno=bbp2372.1998.262.

McLean, Alex, and Geraint Wiggins. 2010. “Tidal—Paern Language for the Live Coding of Music.” In Proceedings of the
7th Sound and Music Computing Conference. Vol. 2010. http://server.smcnetwork.org/files/proceedings/2010/39.pdf.

Ogborn, David. 2012a. “EspGrid: a Protocol for Participatory Electronic Ensemble Performance.” In Audio Engineering
Society Convention 133. Audio Engineering Society. http://www.aes.org/e-lib/browse.cfm?elib=16625.

———. 2012b. “Composing for a Networked, Pulse-Based, Laptop Orchestra.” Organised Sound 17 (01) (Apr): 56–61.
doi:10.1017/S1355771811000513.

———. 2014. “Live Coding in a Scalable, Participatory Laptop Orchestra.” Computer Music Journal 38 (1): 17–30.

Smallwood, Sco, Dan Trueman, Perry R. Cook, and Ge Wang. 2008. “Composing for Laptop Orchestra.” Computer
Music Journal 32 (1): 9–25.

Trueman, Daniel, Perry Cook, Sco Smallwood, and Ge Wang. 2006. “PLOrk: the Princeton Laptop Orchestra, Year
1.” In Proceedings of the International Computer Music Conference, 443–450. http://www.scott-smallwood.com/pdf/plork_
icmc2006.pdf.

Wang, Ge, Dan Trueman, Sco Smallwood, and Perry R. Cook. 2008. “e Laptop Orchestra as Classroom.” Computer
Music Journal 32 (1): 26–37.

Wilson, Sco, Norah Lorway, Rosalyn Coull, Konstantinos Vasilakos, and Tim Moyers. 2014. “Free as in BEER: Some
Explorations into Structured Improvisation Using Networked Live-Coding Systems.” Computer Music Journal 38 (1):
54–64.

http://quod.lib.umich.edu/cgi/p/pod/dod-idx/continued-evolution-of-the-supercollider-real-time-synthesis.pdf?c=icmc;idno=bbp2372.1998.262
http://quod.lib.umich.edu/cgi/p/pod/dod-idx/continued-evolution-of-the-supercollider-real-time-synthesis.pdf?c=icmc;idno=bbp2372.1998.262
http://server.smcnetwork.org/files/proceedings/2010/39.pdf
http://www.aes.org/e-lib/browse.cfm?elib=16625
http://dx.doi.org/10.1017/S1355771811000513
http://www.scott-smallwood.com/pdf/plork_icmc2006.pdf
http://www.scott-smallwood.com/pdf/plork_icmc2006.pdf

	Introduction
	Distributed Ensembles and Other Applications
	Projected ensembles
	Zero installation ensembles
	``Show Us Your Screens''

	Network Music Challenges and Architecture
	Security
	Synchronization

	Workshop Feedback
	Conclusions and Future Work
	Acknowledgements


