
TIDAL – PATTERN LANGUAGE FOR LIVE CODING OF MUSIC

Alex McLean and Geraint Wiggins
Centre for Cognition, Computation and Culture

Department of Computing
Goldsmiths, University of London

ABSTRACT

Computer language for the description of pattern has been
employed for both analysis and composition of music. In
this paper we investigate the latter, with particular inter-
est in pattern language for use in live coding performance
[1]. Towards this end we introduce Tidal, a pattern lan-
guage designed for music improvisation, and embedded in
the Haskell programming language.

Tidal represents polyphonic patterns as a time varying
function, providing an extensible range of pattern genera-
tors and combinators for composing patterns out of hier-
archies of sub-patterns. Open Sound Control (OSC) mes-
sages are used to trigger sound events, where each OSC
parameter may be expressed as a pattern. Tidal is designed
to allow patterns to be created and modified during a live
coded performance, aided by terse, expressive syntax and
integration with an emerging time synchronisation stan-
dard.

1. INTRODUCTION

When we view the composed sequence “abcabcabc. . . ” we
quickly infer the pattern “repeat abc”. This is inference
of hierarchy aiding memory of long sequences, prediction
of future values and recognition of objects. Pattern per-
vades the arts; as Alfred Whitehead [2] eloquently puts it,
“Art is the imposing of a pattern on experience, and our
aesthetic enjoyment is recognition of the pattern.” To our
shame these words were background to Whitehead lam-
basting those taking quotes out of context, but nonetheless
communicate a role of pattern supported here; one individ-
ual encodes a pattern and another decodes it, both actively
engaged with the work while creating their own experi-
ence. In this paper we examine the encoding of pattern
in particular, introducing Tidal, a computer language for
encoding musical patterns during improvised live coding
performances [1].

Pattern is everywhere, and the subject of musical pat-
tern is a broad subject alone. The desire to capture musical
patterns with machines goes back to well before electronic
computers. For example, Leonardo da Vinci invented a
hurdy gurdy with movable pegs to encode a pattern, and
multiple adjustable reeds which transformed the pattern

Copyright: c©2010 Alex McLean et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

into a canon [3]. Hierarchies and heterarchies of repeat-
ing structure run throughout much of music theory, and
computational approaches to music analysis, indexing and
composition all have focus on discrete musical events and
the rules to which they conform [4, §4.2]. From this we
assert that the encoding of pattern is fundamental to mu-
sic making. In the following we review support given to
musical pattern making by computer language, and then
introduce Tidal, a language for live improvisation of musi-
cal pattern. Before that we motivate the discussion through
brief review of the practice of live coding, for which Tidal
has been created.

2. LIVE CODING

Since 2003 an active group of practitioners and researchers
[5] have been developing new (and rejuvinating old) ap-
proaches to improvising computer music and video ani-
mation; activity collectively known as live coding [6, 1,
7]. The archetypal live coding performance involves pro-
grammers writing code on stage, with their screens pro-
jected for an audience. The code is dynamically inter-
preted, taking on edits on-the fly without losing process
state, so that no unwanted discontinuities in the output oc-
cur. Here a software development process is the perfor-
mance, with the musical or visual work generated not by a
finished program, but its journey of development from an
empty text editor to complex algorithm, generating contin-
uously changing musical or visual form along the way.

A key challenge set to live coders is to react quickly in
musical response to other performers, or else on their own
whim. This can be difficult due to a straight trade off in the
level of abstraction they have chosen; while a traditional
instrumentalist makes one movement to make one sound,
a live coder makes many movements (key presses) in order
to describe many sounds. It is in a live coder’s interest to
find highly expressive computer language that allows their
ideas to be described succinctly. The subject of We believe
the prese focus on the composition of pattern language pro-
vides a positive step in the right direction.

3. PATTERN LANGUAGE

Literature on pattern language is mainly concerned with
analysis of composed works relative to a particular the-
ory of music. For example Simon and Sumner [8] pro-
pose a formal language for music analysis, consisting of
a minimal grammar for describing phrase structure within
periodic patterns. Their language allows for multidimen-

mailto:alex@slab.org
mailto:g.wiggins@gold.ac.uk
http://creativecommons.org/licenses/by/3.0/

sional patterns, where different aspects such as note value,
onset and duration may be expressed together. The gram-
mar is based on a language used for description of aptitude
tests which treat pattern induction as a correlate for intel-
ligence. Somewhat relatedly, research has since suggested
that there is a causal link between music listening and in-
telligence [9], known as the “Mozart effect”. However this
result has proved highly controversial [10], and we would
certainly not claim that pattern language makes you clever.
Deutsch and Feroe [11] introduced a similar pattern lan-
guage to that of Simon and Sumners, for the analysis of
hierarchical relationships in tonal music with reference to
gestalt theory of perception.

The analytical perspective shown in the above lan-
guages puts focus on simple patterns with unambiguous
interpretation. Music composition however demands com-
plex patterns with many possible interpretations, leading
to divergent perception across listeners. Therefore pattern
language for synthesis of music requires a different ap-
proach from analysis. Indeed, a need for the design of
pattern language for music composition is identified by
Laurie Spiegel in her 1981 paper “Manipulations of Mu-
sical Patterns” [12]. Twelve classes of pattern transforma-
tion, taken from Spiegel’s own introspection as a composer
are detailed: transposition (translation by value), rever-
sal (value inversion or time reversal), rotation (cycle time
phase), phase offset (relative rotation, e.g. a canon), rescal-
ing (of time or value), interpolation (adding midpoints and
ornamentation), extrapolation (continuation), fragmenta-
tion (breaking up of an established pattern), substitution
(against expectation), combination (by value – mixing/-
counterpoint/harmony), sequencing (by time – editing) and
repetition. Spiegel felt these to be ‘tried and true’ basic op-
erations, which should be included in computer music ed-
itors alongside insert, delete and search-and-replace. Fur-
ther, Spiegel proposed that studying these transformations
could aid our understanding of the temporal forms shared
by music and experimental film, including human percep-
tion of them.

Pattern transformations are evident in Spiegel’s own
Music Mouse software, and can also be seen in music soft-
ware based on the traditional studio recording paradigm
such as Steinberg Cubase and Apple Logic Studio. How-
ever Spiegel is a strong advocate for the role of the mu-
sician programmer, and expresses hope that these pattern
transformations would be formalised into programming li-
braries. Such libraries have indeed since emerged. Hi-
erarchical Music Specification Language (HMSL) devel-
oped in the 1980s includes an extensible framework for al-
gorithmic composition, with some inbuilt pattern transfor-
mations. The Scheme based Common Music environment,
developed from 1989, contains a well developed object ori-
ented pattern library [13]; classes are provided for pattern
transformations such as permutation, rotation and random
selection, and for pattern generation such as Markov mod-
els, state transition and rewrite rules. The SuperCollider
language [14] also comes with a extensive pattern library,
benefiting from an active free software development com-
munity, and with advanced support for live coding. These

systems are all inspiration for our own pattern language,
introduced below.

4. TIDAL

Tidal is a pattern language embedded in the Haskell pro-
gramming language, consisting of pattern representation,
a library of pattern generators and combinators, an event
scheduler and programmer’s live coding interface. This
is an extensive re-write of earlier work introduced under
the working title of Petrol [15]. Extensions include im-
proved pattern representation and fully configurable inte-
gration with the Open Sound Control (OSC) protocol [16].

4.1 Features

Before examining Tidal in detail we first characterise it in
terms of features expected of a pattern language.

4.1.1 Host language

Tidal is a domain specific language embedded in the
Haskell programming language. The choice of Haskell al-
lows us to use its powerful type system, but also forces us
to work within strict constraints brought by its static types
and pure functions. We can however turn this strictness to
our advantage, through use of Haskell’s pioneering type-
level constructs such as functors and monads. Once the
notion of a pattern is defined in terms of these constructs
a whole range of cutting edge computer research becomes
available, which can then be explored for application in
describing musical pattern.

Tidal inherits Haskell’s syntax which is both terse
(thanks to its declarative approach) and flexible, for exam-
ple it is trivial to define new infix operators. Terse syntax
allows for faster expression of ideas, and therefore a tighter
programmer feedback loop more suitable for creative tasks
[17].

4.1.2 Pattern composition

In Tidal, patterns may be composed of numerous sub-
patterns in a variety of ways and to arbitrary depth, to
produce complex wholes from simple parts. This could
include concatenating patterns time-wise, merging them
so that they co-occur, or performing pairwise operations
across patterns, for example combining two numerical pat-
terns by multiplying their values together. Composition
may be heterarchical, where sub-pattern transformations
are applied at more than one level of depth within a larger
pattern.

4.1.3 Random access

Both Common Music and SuperCollider represent patterns
using lazy evaluated lists, where values are calculated one
at a time as needed, rather than all together when the list
is defined. This allows long, perhaps infinitely long lists
to be represented efficiently in memory as generator func-
tions, useful for representing fractal patterns for example.
In some languages, including Haskell, lists are lazily evalu-
ated by default, without need for special syntax. This is not
how patterns are represented in Tidal however. Lazy lists

are practical for linear operations, but you cannot evaluate
the 100th value without first evaluating the first 99. This is
a particular problem for live coding; if you were to change
the definition of a lazy list, in order to continue where you
left off you must regenerate the entire performance up to
the current time position. 1 Further, it is much more com-
putationally expensive to perform operations over a whole
pattern without random access, even in the case of straight-
forward reversal.

Tidal allows for random access by representing a pattern
not as a list of events but as a function from time values to
events. A full description is given in §4.2.

4.1.4 Time representation

Time can be conceptualised either as linear change with
forward order of succession, or as a repeating cycle where
the end is also the beginning of the next repetition [18]. We
can relate the former to the latter by noting that the phase
plane of a sine wave is a circle; a sine wave progresses
over linear time, but its oscillation is a repeating cycle. As
a temporal artform, the same division is present in music,
in repeating rhythmic structures that nonetheless progress
linearly. For this reason Tidal allows both periodic and
infinite patterns to be represented.

Another important distinction is between discrete and
continuous time. In music tradition, time may be notated
within discrete symbols, such as Western staff notation
or Indian bol syllables, but performed with subtle phras-
ing over continuous time. Tidal maintains this distinction,
where patterns are events over discrete time steps, but may
include patterns of floating point onset time deltas. More
details on this in §5.1.

4.1.5 Ready-made generators and transforms

A pattern library should contain a range of basic pattern
generators and transforms, which can be straightforwardly
composed into complex structures. It may also contain
more complex transforms, or else have a community repos-
itory where such patterns may be shared. Tidal contains a
range of these, some of which are inspired by other pattern
languages, and others that come for free from Haskell’s
standard library of functions, including its general support
for manipulating collections.

4.1.6 Community

“Computers’re bringing about a situation
that’s like the invention of harmony. Sub-
routines are like chords. No one would think
of keeping a chord to himself. You’d give it
to anyone who wanted it. You’d welcome al-
terations of it. Sub-routines are altered by a
single punch. We’re getting music made by
man himself: not just one man.” John Cage,
1969 [19]

John Cage’s vision has not universally met with real-
ity, much music software is proprietary, and in the United

1 SuperCollider supports live coding patterns using PatternProxiess
[7]. These act as place-holders within a pattern, allowing a programmer
to define sub-patterns which may be modified later.

States sound synthesis algorithms are impeded by software
patents. However computer music languages are judged
by their communities, sharing code and ideas freely, par-
ticularly around languages released as free software them-
selves. A pattern language then should make sharing ab-
stract musical ideas straightforward, so short snippets of
code may be easily used, modified and passed on. This is
certainly possible with Tidal, although this is a young lan-
guage which has not yet had a community grow around it.
Towards this end however, the first author is developing a
website for sharing snippets of musical code, for Tidal and
other languages.

4.2 Representation

We now turn to the detail of how Tidal represents patterns.
The period of a pattern – the duration at which it repeats –
is represented in Haskell’s type system as an integer:

type Period = Maybe Int

The integer type Int is encapulated within the Maybe

type, so that we can represent both periodic and non-
periodic (i.e. infinite) patterns. For example the pattern “a
followed by repeating bs” has a Period of Nothing, and
“abcdefgh, repeated” would have a Period of Just 8 2 .

The structure of a pattern is defined as a function from
integer time to a list of events:

type Behaviour a = Int → [Maybe a]

The name of the Behaviour type is borrowed from re-
active programming nomenclature [20], where a behaviour
is the term for a time-varying value. Note that Behaviour
is an abstract type, where a is a wild card standing for
any other type. For example a pattern of musical notes
could be of type Behaviour String, where pitch labels
are represented as character strings, or alternatively of type
Behaviour Int for a pattern of MIDI numbered note
events. Another thing to note is that the Maybe type is
again employed so that non-values may be included in a
list of events. The reader may ask, why would you want to
store non-values in a list at all? We might simply answer
that a rest has a particular musical identity and so needs
to be represented. More practical motivation is shown in
§5, where Nothing is shown to have different meaning in
different situations.

A pattern then is composed of a Behaviour and
Period, given the field names at and period respec-
tively:

data Pattern a =
Pattern {at :: Behaviour, period :: Period}

A pattern may be constructed as in the following exam-
ple representing the repeating sequence “0, 2, 4, 6”:

p = Pattern {at = λn → [Just ((n ‘mod‘ 4) ∗ 2)],
period = Just 4}

We access values by evaluating a behaviour with a time
value, for example with the above pattern, at p 1 evalu-
ates to [Just 2]. As this is a cyclic pattern of period 4,
at p 5 would give the same result, as would at p (-3).

2 Just andNothing are the two constructors of Haskell’sMaybe
type

The above pattern is expressed as a function over time.
An approach more idiomatic to Haskell would be to de-
fine it recursively, in this case defining at p 0 to return
Just [0] and subsequent at p n to return the value at
n - 1 plus two. However great care must be taken when
introducing such dependencies between time steps; it is
easy to produce uncomputable patterns, or as in this case
patterns which may require whole cycles to be computed
to find values at a single time point.

4.3 Pattern generators

A pattern would not normally be described by directly in-
voking the constructor in the rather long-winded manner
shown in the previous section, but by calling one of the
pattern generating functions provided by Tidal. These con-
sist of generators of basic repeating forms analogous to
sine, square and triangle waves, and a parser of complex
sequences. The sine1 function produces a sine cycle of
floating point numbers in the range 0 to 1 with a given
period, here rendered as grey values with the drawGray

function:

drawGray $ sine1 16

Tidal is designed for use in live music improvisation,
but is also applicable for off-line composition, or for non
musical domains. We take this opportunity to illustrate the
examples in the following sections with visual patterns of
colour as above, in sympathy with the present medium. For
space efficiency the above cyclic pattern is rendered as a
row of blocks, but ideally would be rendered as a circle, as
the end of one cycle is also the beginning of the next.

Linear interpolation between values, somewhat related
to musical glissandi, is provided by the tween function:

drawGray $ tween 0.0 1.0 16

If a pattern is given as a string, it is parsed according
to the context, made possible through Haskell’s type infer-
ence, and a string overloading extension.

draw "black blue lightgrey"

In the above example the draw function requires a
colour pattern, and so a parser of colour names is automat-
ically employed. Tidal can parse the basic types String,
Bool, Int and Float and it is straightforward to add more
as needed. All these parsers are expressed in terms of a
common parser, which provides syntax for combining sub-
patterns together into polymetric patterns. Sub-patterns
with different periods may be combined either by repeti-
tion or by padding. In both cases the result is a combined
pattern with period of the lowest common multiple of those
of the constituent patterns. Combining patterns by repeti-
tion is denoted by square brackets, where constituent parts

are separated by commas. In the following example the
first part is repeated twice and the second thrice:

draw "[black blue green, orange red]"

Note that co-occurring events are visualised by the draw
function as vertically stacked colour blocks.

Combining by padding each part with rests is denoted
with curly brackets, and inspired by the Bol Processor [21].
In this example the first part is padded with one rest every
step, and the second with two rests:

draw "{black blue green, orange red}"

In the above example there are steps where two events
co-occur, and the block is split in two, where one event
occurs, taking up the whole block, and where no events
occur and the block is blank.

Polymetries may be embedded to any depth (note the
use of a tilde to denote a rest):

draw "[{black ˜ grey, orange}, red green]"

4.4 Pattern combinators

If an underlying pattern representation were to be a list, a
pattern transformer would have to operate directly on se-
quences of events. For example, we might rotate a pat-
tern one step forward by popping from the end of the list,
and unshifting/consing the result to the head of the list. In
Tidal, because a pattern is a function from time to events,
a transformer may manipulate time as well as events. Ac-
cordingly the Tidal function rotL for rotating a pattern to
the left is straightforwardly defined as:

rotL p n =
Pattern (λt → at p (t + n)) (period p)

Rotating to the right is simply defined as the inverse:

rotR p n = rotL p (0 - n)

We won’t go into the implementation details of all the
pattern transformers here, suffice to say that they are all
implemented as composable behaviours. The reader may
refer to the source code for further details.

The cat function concatenates patterns together time-
wise:

drawGray $ cat [tween 0 1 8, tween 1 0 8]

As you might expect, the period of the resulting pattern
will be the sum of the constituent pattern periods, unless
one of the constituents is infinite, in which case the result
will also be infinite.

A periodic pattern may be reversed with rev:

drawGray $ rev (sine1 8)

Or alternatively expressed forwards and then in reverse
with palindrome:

drawGray $ palindrome (sine1 8)

The every function allows transformations to be ap-
plied to periodic patterns every n cycles. For example, to
rotate a pattern by a single step every third repetition:

draw $ every 3 (1 ‘rotR‘) "black grey red"

The Pattern type is defined as an applicative functor, al-
lowing a function to be applied to every element of a pat-
tern using the <$> functor map operator. For example,
we may add some blue to a whole pattern by mapping the
blend function (from the Haskell Colour library) over its
elements:

draw $ blend 0.5 blue <$> p
where p = every 3 (1 ‘rotR‘) "black grey red"

If we were doing something similar to a sound rather
than colour event, we might understand it as a musical
transposition. We can also apply the functor map condi-
tionally, for example to transpose every third cycle:

drawGray $ every 3 ((+ 0.6) <$>) "0.2 0.3 0 0.4"

The Haskell applicative functor syntax also allows a
new pattern to be composed by applying a function to com-
binations of values from other patterns. For example, the
following gives a polyrhythmic lightening and darkening
effect, by blending values from two patterns:

draw $
(blend 0.5) <$> "red blue" <∗>

"white white black"

The use of <∗> here deserves some explanation. It al-
lows us to map a function over more than one pattern at a
time. In the above example, for each call to blend, a value
is taken from each pattern. The <∗> operator is defined
for Patterns so that all events are used at least once, and no
more than necessary to fulfil this constraint. Operationally,
the shorter list of events is repeated until it is the same
length as the longer; this is behaviour halfway between that
of a Haskell List and a ZipList. For implementation de-
tails please refer to the code, but the end result are minimal
combinations of polyphonic events without discarding any
values.

The Tidal onsets function filters out elements that do
not begin a phrase. Here we manipulate the onsets of a
pattern (blending them with red), before combining them
back with the original pattern.

draw $ combine [blend 0.5 red <$> onsets p, p]
where p = "blue orange ˜ ˜ [green, pink] red ˜"

The onsets function is particularly useful in cross-
domain patterning, for example taking a pattern of notes
and accentuating phrase onsets by making a time onset
and/or velocity pattern from it.

5. OPEN SOUND CONTROL PATTERNS

Tidal has no capability for sound synthesis itself, but in-
stead represents and schedules patterns of OSC messages
to be sent to a synthesiser. Below we see how the ‘shape’
of an OSC message is described in Tidal:

synth = OscShape {path = "/trigger",
params =
[F "note" Nothing,
F "velocity" (Just 1),
S "wave" (Just "triangle")

],
timestamp = True
}

This is a trivial "/trigger" message consisting of two
floating point parameters and one string parameter. Each
parameter may be given a default value in the OscShape;
in this case velocity has a default of 1, wave has a default
of "triangle" and note has no default. This means if a
OSC pattern contains a message without a note value set,
there will be no value to default it to, and so the message is
discarded. Pattern accessors for each parameter are defined
using names given in the OscShape:

note = makeF synth "note"
velocity = makeF synth "velocity"
wave = makeS synth "wave"

5.1 Scheduling

As timestamp is set to True in our OscShape exam-
ple, one extra pattern accessor is available to us, for onset
deltas:

onset = makeT synth

This allows us to make time patterns, applying sub-
tle (or if you prefer, unsubtle) expression. This is imple-
mented by wrapping each message in a timestamped OSC
bundle. A simple example is to vary onset times by up to
0.02 seconds using a sine function:

onset $ (∗ 0.02) <$> sine 16

Instances of Tidal can synchronise with each other (and
indeed other systems) via the NetClock protocol (http:
//netclock.slab.org/). NetClock is based upon
time synchronisation in SuperCollider [14]. This means
that time patterns can notionally schedule events to occur

http://netclock.slab.org/
http://netclock.slab.org/

in the past, up to the SuperCollider control latency, which
has a default of 0.2 seconds.

It is also possible to create tempo patterns to globally af-
fect all NetClock clients, for example to double the tempo
over 32 time steps:

tempo $ tween 120 240 32

5.2 Sending messages

We connect our OSC pattern to a synthesiser using a
stream, passing the network address and port of the syn-
thesiser, along with the OscShape we defined earlier:

s ← stream "127.0.0.1" 7770 synth

This starts a scheduling thread for sending the mes-
sages, and returns a function for replacing the current pat-
tern in shared memory. Patterns are composed into an OSC
message Pattern and streamed to the synthesiser as follows:

s $ note ("50 ˜ 62 60 ˜ ˜")
˜˜ velocity foo
˜˜ wave "square"
˜˜ onset ((∗ 0.01) <$> foo)

where foo = sine1 16

The ˜˜ operator merges the three parameter patterns
and the onset pattern together, into a single OSC message
pattern. This is then passed to the stream s, replacing the
currently scheduled pattern. Note that both velocity and
onset are defined in terms of the separately defined pat-
tern foo.

5.3 Use in music improvisation

Music improvisation is made possible in Tidal using the
dynamic Glasgow Haskell Compiler Interpreter (http:
//www.haskell.org/ghc/). This allows the mu-
sician to develop a pattern over successive calls, per-
haps modifying the preceding listing to transpose the note
values every third period, make a polyrhythmic pattern
of wave shapes, or combine multiple onset patterns into
a chorus effect. Tidal provides a mode for the iconic
emacs programmer’s editor (http://www.gnu.org/
software/emacs/) as a GHCI interface, allowing pat-
terns to be live coded within an advanced developers envi-
ronment. 3

6. CONCLUSION

We have introduced Tidal, a language designed for live
coding of musical pattern. Tidal has already been field
tested through several performances by the first author, in-
cluding to large audiences at international music festivals,
informing ongoing development of the system. The system
will be tested further through a series of planned work-
shops with potential users, and full documented release of
the code, which is already available in its present form at
http://yaxu.org/tidal/. A research programme
is planned towards the development of a Graphical User

3 Projecting the emacs interface as part of a live coding performance
has its own aesthetic, having a particularly strong effect on many devel-
opers in the audience, either of elation or revulsion.

Interface for live musical pattern making, with Tidal pro-
viding the pattern language. Work is ongoing towards ap-
plying Tidal to the domain of live video animation, with
current focus on colour transitions over time inspired by
the inventions of Mary Hallock-Greenwalt [22]. As men-
tioned in §4.1.6, we hope that a website for sharing ideas
and code for musical patterning will encourage connec-
tions between communities of musicians and programmers
interested in pattern.

7. REFERENCES

[1] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 03, pp. 321–330, 2003.

[2] A. N. Whitehead, Dialogues of Alfred North Whitehead
(A Nonpareil Book). David R Godine, August 2001.

[3] L. Spiegel, “A short history of intelligent instruments,”
Computer Music Journal, vol. 11, no. 3, 1987.

[4] R. Rowe, Machine Musicianship. The MIT Press,
March 2001.

[5] A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,
D. Griffiths, N. Collins, and A. Alexander, “Live algo-
rithm programming and a temporary organisation for
its promotion,” in read me — Software Art and Cul-
tures (O. Goriunova and A. Shulgin, eds.), 2004.

[6] A. Blackwell and N. Collins, “The programming lan-
guage as a musical instrument,” in Proceedings of
PPIG05, University of Sussex, 2005.

[7] J. Rohrhuber, A. de Campo, and R. Wieser, “Algo-
rithms today: Notes on language design for just in
time programming,” in Proceedings of the 2005 Inter-
national Computer Music Conference, 2005.

[8] H. A. Simon and R. K. Sumner, “Pattern in music,”
pp. 83–110, 1992.

[9] F. H. Rauscher, G. L. Shaw, and C. N. Ky, “Music and
spatial task performance,” Nature, vol. 365, p. 611, Oc-
tober 1993.

[10] K. M. Steele, K. E. Bass, and M. D. Crook, “The mys-
tery of the mozart effect: Failure to replicate,” Psycho-
logical Science, pp. 366–369, July 1999.

[11] D. Deutsch and J. Feroe, “The internal representation
of pitch sequences in tonal music.,” Psychological Re-
view, vol. 88, pp. 503–22, November 1981.

[12] L. Spiegel, “Manipulations of musical patterns,” in
Proceedings of the Symposium on Small Computers
and the Arts, pp. 19–22, 1981.

[13] H. K. Taube, Notes from the Metalevel: Introduction
to Algorithmic Music Composition. Lisse, The Nether-
lands: Swets & Zeitlinger, 2004.

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://yaxu.org/tidal/

[14] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[15] A. McLean and G. Wiggins, “Petrol: Reactive pattern
language for improvised music,” in Proceedings of the
International Computer Music Conference, June 2010.

[16] A. Freed and A. Schmeder, “Features and future of
open sound control version 1.1 for nime,” in NIME,
2009.

[17] A. McLean and G. Wiggins, “Bricolage programming
in the creative arts,” in 22nd Psychology of Program-
ming Interest Group, 2010.

[18] G. Buzsaki, Rhythms of the Brain. Oxford University
Press, USA, 1 ed., August 2006.

[19] J. Cage, Art and Technology. Cooper Square Press,
1969.

[20] C. Elliott, “Push-pull functional reactive program-
ming,” in Haskell Symposium, 2009.

[21] B. Bel, “Rationalizing musical time: syntactic and
symbolic-numeric approaches,” in The Ratio Book
(C. Barlow, ed.), pp. 86–101, Feedback Studio, 2001.

[22] M. H. Greenewalt, Nourathar, the Fine Art of Light
Color Playing. Philadelphia. Pa. Westbrook, 1946.

	 1. Introduction
	 2. Live coding
	 3. Pattern language
	 4. Tidal
	4.1 Features
	4.1.1 Host language
	4.1.2 Pattern composition
	4.1.3 Random access
	4.1.4 Time representation
	4.1.5 Ready-made generators and transforms
	4.1.6 Community

	4.2 Representation
	4.3 Pattern generators
	4.4 Pattern combinators

	 5. Open Sound Control patterns
	5.1 Scheduling
	5.2 Sending messages
	5.3 Use in music improvisation

	 6. Conclusion
	 7. References

